Skip to main content
Log in

Single-photon blockade in a hybrid optomechanical system involving two qubits in the presence of phononic number and coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Single-photon generation sources have gained a prime importance in quantum information science and technologies. In this regard, serious efforts have been recently performed in the optomechanical systems in order to generate the single-photon states in a macroscopic scale. In this paper, we consider an optomechanical system contains two optical cavities both coupled with a mechanical membrane which is placed between them. Each optical mode interacts with a qubit (two-level atom). Considering the steady-state solution, we analytically obtain the state vector of the entire system wherein the initial mechanical mode has been prepared as phononic number and coherent states. In the continuation, in order to study the single-photon blockade phenomenon, we evaluate the equal-time second-order correlation function (\(g^{2}(0)\)) as well as the probability distribution of single photon (\(P_1\)) to confirm the results obtained from \(g^{2}(0)\). In addition, we investigate the effect of photon tunneling, decay rate of photons and coupling between photons and each qubit on the single-photon blockade within one of the cavities. Our numerical results show that the complete single-photon blockade occurs, i.e., \(g^{(2)}(0)\) tends to very small amounts of the order of \(10^{-8}\) to \(10^{-4}\) via increasing the photon tunneling and the coupling between photons and qubits. Furthermore, increasing the dissipation effects attenuates the single-photon blockade occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Li, Y., Huang, Y.Y., Zhang, X.Z., Tian, L.: Optical directional amplification in a three-mode optomechanical system. Opt. Express 25, 18907 (2017)

    ADS  Google Scholar 

  2. Jiang, C., Ji, B., Cui, Y., Zuo, F., Shi, J., Chen, G.: Quantum-limited directional amplifier based on a triple-cavity optomechanical system. Opt. Express 26, 15255 (2018)

    ADS  Google Scholar 

  3. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    ADS  Google Scholar 

  4. Shahidani, S., Naderi, M.H., Soltanolkotabi, M.: Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A 88, 053813 (2013)

    ADS  Google Scholar 

  5. Parvaz, M., Ranjbar Askari, H., Baghshahi, H.R.: Double electromagnetically induced transparency windows in the -type three-level atoms-assisted optomechanical system. Optik 220, 164974 (2020)

    ADS  Google Scholar 

  6. Zhang, Q., Zhang, X., Liu, L.: Transfer and preservation of entanglement in a hybrid optomechanical system. Phys. Rev. A 96, 042320 (2017)

    ADS  Google Scholar 

  7. Rafeie, M., Tavassoly, M.K., Setodeh Kheirabady, M.: Macroscopic mechanical entanglement stability in two distant dissipative optomechanical systems. Ann. Phys. (Berl.) 534(7), 2100455 (2022)

    ADS  MathSciNet  Google Scholar 

  8. Kòmàr, P., Bennett, S.D., Stannigel, K., Habraken, S.J.M., Rabl, P., Zoller, P., Lukin, M.D.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A 87, 013839 (2013)

    ADS  Google Scholar 

  9. Liao, J.-Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)

    ADS  Google Scholar 

  10. Qiu, L., Gan, L., Ding, W., Li, Z.-Y.: Single-photon generation by pulsed laser in optomechanical system via photon blockade effect. J. Opt. Soc. Am. B 30, 1683 (2013)

    ADS  Google Scholar 

  11. Li, X., Zhang, W.-Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)

    ADS  Google Scholar 

  12. Zhou, Y.H., Zhang, X.Y., Wu, Q.C., Ye, B.L., Zhang, Z.-Q., Zou, D.D., Shen, H.Z., Yang, C.-P.: Conventional photon blockade with a three-wave mixing. Phys. Rev. A 102, 033713 (2020)

    ADS  Google Scholar 

  13. Hassani Nadiki, M., Tavassoly, M.K.: Photon blockade in a system consisting of two optomechanical cavities via photon hopping. Eur. Phys. J. Plus 136, 279 (2021)

    Google Scholar 

  14. Yuan, Z.-H., Wang, H.-F., Zhu, A.-D.: Controllable photon blockade in double-cavity optomechanical system with Kerr-type nonlinearity. Quantum Inf. Proccess. 21, 22 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Duan, Z.-C., Li, J.-P., Qin, J., Yu, Y., Huo, Y.-H., Hofling, S., Lu, C.-Y., Liu, N.-L., Chen, K., Pan, J.-W.: Proof-of principle demonstration of compiled Shor’s algorithm using a quantum dot single-photon source. Opt. Express 28, 18917 (2020)

    ADS  Google Scholar 

  16. Zhang, K., He, J., Wang, J.: Two-way single-photon-level frequency conversion between 852 nm and 1560 nm for connecting cesium d2 line with the telecom c-band. Opt. Express 28, 27785 (2020)

    ADS  Google Scholar 

  17. Li, X., Xin, J., Li, G., Lu, X.-M., Wei, L.F.: Quantum routings for single photons with different frequencies. Opt. Express 29, 8861 (2021)

    ADS  Google Scholar 

  18. Leónski, W., Tanaś, R.: Possibility of producing the onephoton state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 49, R20 (1994)

    ADS  Google Scholar 

  19. Ferretti, S., Andreani, L.C., Türeci, H.E., Gerace, D.: Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation. Phys. Rev. A 82, 013841 (2010)

    ADS  Google Scholar 

  20. Ghosh, S., Liew, T.C.H.: Dynamical blockade in a single-mode bosonic system. Phys. Rev. Lett. 123, 013602 (2019)

    ADS  Google Scholar 

  21. Flayac, H., Savona, V.: Unconventional photon blockade. Phys. Rev. A 96, 053810 (2017)

    ADS  Google Scholar 

  22. Sarma, B., Sarma, A.K.: Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A 98, 013826 (2018)

    ADS  Google Scholar 

  23. Singha, M.K., Jhab, P.K., Bhattacherjeec, A.B.: Photon blockade induced tunable source of one/two photon in a double quantum dot-semiconductor microcavity system. Optik 185, 685 (2019)

    ADS  Google Scholar 

  24. Zou, F., Lai, D.-G., Liao, J.-Q.: Enhancement of photon blockade effect via quantum interference. Opt. Express 28, 16175 (2020)

    ADS  Google Scholar 

  25. Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Türeci, H.E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)

    ADS  Google Scholar 

  26. Müller, K., Rundquist, A., Fischer, K.A., Sarmiento, T., Lagoudakis, K.G., Kelaita, Y.A., Sánchez Muñoz, C., del Valle, E., Laussy, F.P., Vučković, J.: Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114, 233601 (2015)

    ADS  Google Scholar 

  27. Snijders, H.J., Frey, J.A., Norman, J., Flayac, H., Savona, V., Gossard, A.C., Bowers, J.E., van Exter, M.P., Bouwmeester, D., Löffler, W.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)

    ADS  Google Scholar 

  28. Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabelli, J., Estève, Jérôme.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)

    ADS  Google Scholar 

  29. Zhou, L., Cheng, L.J., Han, Y., et al.: Nonlinearity enhancement in optomechnical system. Phys. Rev. A 88, 063854 (2014)

    ADS  Google Scholar 

  30. Chauhan, A.K., Biswas, A.: Motion-induced enhancement of Rabi coupling between atomic ensembles in cavity optomechanics. Phys. Rev. A 95, 023813 (2017)

    ADS  Google Scholar 

  31. Genes, C., Ritsch, H., Drewsen, M., et al.: Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys. Rev. A 84, 051801 (2011)

    ADS  Google Scholar 

  32. Sohail, A., Zhang, Y., Zhang, J., et al.: Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Sci. Rep. 6, 28830 (2016)

    ADS  Google Scholar 

  33. Liao, J.-Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)

    ADS  Google Scholar 

  34. Bai, C., Hou, B.P., Lai, D.G., Wu, D.: Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir. Phys. Rev. A 93, 043804 (2016)

    ADS  Google Scholar 

  35. Hassani Nadiki, M., Tavassoly, M.K.: The amplitude of the cavity pump field and dissipation effects on the entanglement dynamics and statistical properties of an optomechanical system. Opt. Commun. 452, 31 (2019)

    ADS  Google Scholar 

  36. Yang, X., Ling, Y., Shaoand, X., Xiao, M.: Generation of robust tripartite entanglement with a single-cavity optomechanical system. Phys. Rev. A 95, 052303 (2017)

    ADS  Google Scholar 

  37. Luo, M., Liu, W., He, Y., Gao, S.: High-precision parameter estimation and the Zeno-anti-Zeno crossover in an atom-cavity-optomechanical system. Quantum Inf. Process. 19, 232 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Liao, J.-Q., Wu, Q.-Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89, 014302 (2014)

    ADS  Google Scholar 

  39. Huan, T., Zhou, R., Ian, H.: Dynamic entanglement transfer in a double-cavity optomechanical system. Phys. Rev. A 92, 022301 (2015)

    ADS  Google Scholar 

  40. Bai, C.-H., Wang, D.-Y., Wang, H.-F., Zhu, A.-D., Zhang, S.: Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Sci. Rep. 6, 33404 (2016)

    ADS  Google Scholar 

  41. Cai, Q.-H., Xiao, Y., Yu, Y.-F., Zhang, Z.-M.: Mechanical squeezing and photonic anti-bunching in a coupled two-cavity optomechanical system. Opt. Express 24, 18 (2016)

    Google Scholar 

  42. Zhang, Q., Zhang, X., Liu, L.: Transfer and preservation of entanglement in a hybrid optomechanical system. Phys. Rev. A 96, 042320 (2017)

    ADS  Google Scholar 

  43. Chen, H.J., Chen, C.Z., Fang, X.W., Li, Y., Tang, X.D.: Controllable coherent perfect absorption and transmission in a generalized three-mode optomechanical system. Optik 168, 46 (2018)

    ADS  Google Scholar 

  44. Sohail, A., Rana, M., Ikram, S., Munir, T., Hussain, T., Ahmed, R., Yu, C.-S.: Enhancement of mechanical entanglement in hybrid optomechanical system. Quantum Inf. Process. 19, 372 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Merlin, R.: Generating coherent THz phonons with light pulses. Solid State Commun. 102, 2 (1997)

    Google Scholar 

  46. Zhai, C., Huang, R., Jing, H., Kuang, L.-M.: Mechanical switch of photon blockade and photon-induced tunneling. Opt. Experess 27, 20 (2019)

    Google Scholar 

  47. Wang, D.-Y., Bai, C.-H., Xing, Y., Liu, S., Zhang, S., Wang, H.-F.: Enhanced photon blockade via driving a trapped \(\lambda \)-type atom in a hybrid optomechanical system. Phys. Rev. A 102, 043705 (2020)

    ADS  Google Scholar 

  48. Joshi, C., Larson, J., Jonson, M., Andersson, E., Öhberg, P.: Entanglement of distant optomechanical systems. Phys. Rev. A 85, 033805 (2012)

    ADS  Google Scholar 

  49. Wang, D.-y, Bai, C.-H., Liu, S., Zhang, S., Wang, H.-F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22, 093006 (2020)

    ADS  Google Scholar 

  50. Zou, F., Zhang, X.-Y., Xu, X.-W., Huang, J.-F., Liao, J.-Q.: Multiphoton blockade in the two-photon Jaynes–Cummings model. Phys. Rev. A 102, 053710 (2020)

    ADS  Google Scholar 

  51. Guo, Y.-T., Zou, F., Huang, J.-F., Liao, J.-Q.: Retrieval of photon blockade effect in the dispersive Jaynes–Cummings model. Phys. Rev. A 105, 013705 (2022)

    ADS  MathSciNet  Google Scholar 

  52. Liu, Y.-x, Miranowicz, A., Gao, Y., Bajer, J., Sun, C., Nori, F.: Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical, resonators. Phys. Rev. A 82, 032101 (2010)

    ADS  Google Scholar 

  53. Hassani Nadiki, M., Tavassoly, M.K.: Phonon blockade in a system consisting of two optomechanical cavities with quadratic cavity-membrane coupling and phonon hopping. Eur. Phys. J. D 76, 58 (2022)

    ADS  Google Scholar 

  54. O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, Radoslaw C., Lenander, M., Lucero, Erik, Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, John M., Cleland, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

    ADS  Google Scholar 

  55. Moslehi, M., Baghshahi, H.R., Faghihi, M.J., Mirafzali, S.Y.: Photon and magnon blockade induced by optomagnonic microcavity. Eur. Phys. J. D 137, 777 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Tavassoly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, we aim to obtain the twelve algebraic equations in the steady-state regime from Eq. (13),

$$\begin{aligned}{} & {} (E_{1,0,m(\beta ),0,0}-i \gamma _{c}) C_{1,0,m(\beta ),0,0} + g C_{0,0,m(\beta ),1,0} e_3 \nonumber \\{} & {} \quad +\, J C_{0,1,m(\beta ),0,0} e_4 +\varepsilon _p (C_{0,0,m(\beta ),0,0} e_3 \nonumber \\{} & {} \quad +\, C_{1,1,m(\beta ),0,0} e_5 + \sqrt{2} C_{2,0,m(\beta ),0,0} e_6) =0, \end{aligned}$$
(A.1)
$$\begin{aligned}{} & {} (E_{0,1,m(\beta ),0,0}-i \gamma _{c}) C_{0,1,m(\beta ),0,0} +g C_{0,0,m(\beta ),0,1} e_7 \nonumber \\{} & {} \quad +\,J C_{1,0,m(\beta ),0,0} e_8 + \varepsilon _p (C_{0,0,m(\beta ),0,0} e_7 \nonumber \\{} & {} \quad +\, C_{1,1,m(\beta ),0,0} e_9) + \sqrt{2} C_{0,2,m(\beta ),0,0} e_{10} =0, \end{aligned}$$
(A.2)
$$\begin{aligned}{} & {} (E_{0,0,m(\beta ),1,0}-i \gamma _{a})C_{0,0,m(\beta ),1,0} + g C_{1,0,m(\beta ),0,0} e_{1}\nonumber \\{} & {} \quad +\,\varepsilon _p (C_{1,0,m(\beta ),1,0} e_1 + C_{0,1,m(\beta ),1,0} e_2)=0, \end{aligned}$$
(A.3)
$$\begin{aligned}{} & {} (E_{0,0,m(\beta ),0,1}-i \gamma _{a}) C_{0,0,m(\beta ),0,1} + g C_{0,1,m(\beta ),0,0} e_{2}\nonumber \\{} & {} \quad +\,\varepsilon _p (C_{0,1,m(\beta ),0,1} e_2 + C_{1,0,m(\beta ),0,1} e_1)=0, \end{aligned}$$
(A.4)
$$\begin{aligned}{} & {} (E_{1,1,m(\beta ),0,0}- 2 i \gamma _{c}) C_{1,1,m(\beta ),0,0} + g (C_{1,0,m(\beta ),0,1} e_{11} \nonumber \\{} & {} \quad +\, C_{0,1,m(\beta ),1,0} e_{12}) + \sqrt{2} J (C_{2,0,m(\beta ),0,0} e_{13} \nonumber \\{} & {} \quad +\, C_{0,2,m(\beta ),0,0} e_{14}) +\varepsilon _p (C_{1,0,m(\beta ),0,0} e_{11} \nonumber \\{} & {} \quad +\, C_{0,1,m(\beta ),0,0} e_{12}) =0, \end{aligned}$$
(A.5)
$$\begin{aligned}{} & {} (E_{2,0,m(\beta ),0,0}- 2 i \gamma _{c}) C_{2,0,m(\beta ),0,0} + \sqrt{2} g C_{1,0,m(\beta ),1,0} e_{15} \nonumber \\{} & {} \quad +\, \sqrt{2} J C_{1,1,m(\beta ),0,0} e_{16} +\sqrt{2} \varepsilon _p C_{1,0,m(\beta ),0,0} \, e_{15} =0, \end{aligned}$$
(A.6)
$$\begin{aligned}{} & {} (E_{0,2,m(\beta ),0,0}- 2 i \gamma _{c}) C_{0,2,m(\beta ),0,0} + \sqrt{2} g C_{0,1,m(\beta ),0,1} \, e_{17} \nonumber \\{} & {} \quad +\, \sqrt{2} J C_{1,1,m(\beta ),0,0}\, e_{18} +\sqrt{2} \varepsilon _p C_{0,1,m(\beta ),0,0} \, e_{17} =0, \end{aligned}$$
(A.7)
$$\begin{aligned}{} & {} (E_{1,0,m(\beta ),1,0}- i (\gamma _{c}+\gamma _{a})) C_{1,0,m(\beta ),1,0} \nonumber \\{} & {} \quad +\, \sqrt{2} g C_{2,0,m(\beta ),0,0} e_{6} + J C_{0,1,m(\beta ),1,0} e_{4} \nonumber \\{} & {} \quad +\, \varepsilon _p C_{0,0,m(\beta ),1,0} \, e_{3} =0, \end{aligned}$$
(A.8)
$$\begin{aligned}{} & {} (E_{0,1,m(\beta ),0,1}- i (\gamma _{c}+\gamma _{a})) C_{0,1,m(\beta ),0,1} \nonumber \\{} & {} \quad +\, \sqrt{2} g C_{0,2,m(\beta ),0,0} e_{10} + J C_{1,0,m(\beta ),0,1} e_{8} \nonumber \\{} & {} \quad +\, \varepsilon _p C_{0,0,m(\beta ),0,1} \, e_{7} =0, \end{aligned}$$
(A.9)
$$\begin{aligned}{} & {} (E_{0,1,m(\beta ),1,0}- i (\gamma _{c}+\gamma _{a})) C_{0,1,m(\beta ),1,0} \nonumber \\{} & {} \quad +\, g C_{0,0,m(\beta ),1,1} e_{7} + J C_{1,0,m(\beta ),1,0} e_{8} \nonumber \\{} & {} \quad +\, \varepsilon _p C_{0,0,m(\beta ),1,0} \, e_{7} =0, \end{aligned}$$
(A.10)
$$\begin{aligned}{} & {} (E_{1,0,m(\beta ),0,1}- i (\gamma _{c}+\gamma _{a})) C_{1,0,m(\beta ),0,1} \nonumber \\{} & {} \quad + g C_{0,0,m(\beta ),1,1} e_{3} + J C_{0,1,m(\beta ),0,1} e_{4} \nonumber \\{} & {} \quad +\, \varepsilon _p C_{0,0,m(\beta ),0,1} \, e_{3} =0, \end{aligned}$$
(A.11)
$$\begin{aligned}{} & {} (E_{0,0,m(\beta ),1,1}- 2 i \gamma _{a}) C_{0,0,m(\beta ),1,1} \nonumber \\{} & {} \quad +\, g (C_{0,1,m(\beta ),1,0} \, e_{2} + C_{1,0,m(\beta ),0,1} \, e_1)=0, \end{aligned}$$
(A.12)

where we have used the following notations,

$$\begin{aligned} e_{1}= & {} e_{3}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(0,0)|{\tilde{m}}({\tilde{\beta }})(1,0)\rangle , \end{aligned}$$
(A.13)
$$\begin{aligned} e_{2}= & {} e_{7}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(0,0)|{\tilde{m}}({\tilde{\beta }})(0,1)\rangle , \end{aligned}$$
(A.14)
$$\begin{aligned} e_{4}= & {} e_{8}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(1,0)|{\tilde{m}}({\tilde{\beta }})(0,1)\rangle , \end{aligned}$$
(A.15)
$$\begin{aligned} e_{5}= & {} e_{11}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(1,0)|{\tilde{m}}({\tilde{\beta }})(1,1)\rangle , \end{aligned}$$
(A.16)
$$\begin{aligned} e_{6}= & {} e_{15}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(1,0)|{\tilde{m}}({\tilde{\beta }})(2,0)\rangle , \end{aligned}$$
(A.17)
$$\begin{aligned} e_{9}= & {} e_{12}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(0,1)|{\tilde{m}}({\tilde{\beta }})(1,1)\rangle , \end{aligned}$$
(A.18)
$$\begin{aligned} e_{10}= & {} e_{17}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(0,1)|{\tilde{m}}({\tilde{\beta }})(0,2)\rangle , \end{aligned}$$
(A.19)
$$\begin{aligned} e_{13}= & {} e_{16}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(1,1)|{\tilde{m}}({\tilde{\beta }})(2,0)\rangle , \end{aligned}$$
(A.20)
$$\begin{aligned} e_{14}= & {} e_{18}^{*}=\langle {\tilde{m}}({\tilde{\beta }})(1,1)|{\tilde{m}}({\tilde{\beta }})(0,2)\rangle . \end{aligned}$$
(A.21)

By applying Eq. 12 and using the above definitions, we obtain,

$$\begin{aligned} e_{1}= & {} e_{6} = e_{7} = e_{9} = e_{11} = e_{17} \nonumber \\= & {} \exp \left( -\frac{G^2}{2 \omega _{m}^2}\right) L_{m}\left( -\frac{G^2}{\omega _{m}^2}\right) , \end{aligned}$$
(A.22)
$$\begin{aligned} e_{4}= & {} e_{14} = e_{16}= \exp \left( -\frac{2 G^2}{ \omega _{m}^2}\right) L_{m}\left( -4\frac{G^2}{\omega _{m}^2}\right) , \end{aligned}$$
(A.23)

for the phononic number state (\(|m\rangle \)) where \(L_{m}(-\frac{G^2}{\omega _{m}^2})\) is the Laguerre polynomial. Similarly, for the phononic coherent states \((|\beta \rangle )\) one may arrive at,

$$\begin{aligned} e_{1}= & {} e_{5} = e_{6} = e_{6} = e_{7} = e_{9} = e_{11} = e_{17} \nonumber \\= & {} \exp \left( -\frac{G^2}{2 \omega _{m}^2}\right) \exp \left[ \frac{G}{ \omega _{m}}(\beta -\beta ^*)\right] , \end{aligned}$$
(A.24)
$$\begin{aligned} e_{4}= & {} e_{14} = e_{16}\nonumber \\= & {} \exp \left( -\frac{2 G^2}{ \omega _{m}^2}\right) \exp \left[ \frac{-2 G}{ \omega _{m}}(\beta -\beta ^*)\right] . \end{aligned}$$
(A.25)

In the weak-driving case, the probability amplitudes can also be classified into various groups of different orders of the small value parameter \(\varepsilon _p \). In detail, the amplitude \( C_{0,0,m(\beta ),0,0}\) is of the zero-order of \(\varepsilon _p \), \(C_{1,0,m(\beta ),0,0}\), \(C_{0,1,m(\beta ),0,0}\), \(C_{0,0,m(\beta ),1,0}\), \(C_{0,0,m(\beta ),0,1}\) are of the first-order of \(\varepsilon _p \) and \(C_{1,1,m(\beta ),0,0}\), \(C_{2,0,m(\beta ),0,0}\), \(C_{0,2,m(\beta ),0,0}\), \(C_{1,0,m(\beta ),1,0}\), \(C_{0,1,m(\beta ),0,1}\), \(C_{0,1,m(\beta ),1,0}\), \(C_{1,0,m(\beta ),0,1}\) and \(C_{0,0,m(\beta ),1,1}\) are of the second-order of \(\varepsilon _p \). Accordingly, we have ignored the terms of order \(\varepsilon _p ^3\) in the equations. So, we eventually arrive at the solution of Eqs. (A.1) to (A.4) as,

$$\begin{aligned} C_{1,0,m(\beta ),0,0}= & {} \left( \frac{J \,e_{4}\, e_{7}- e_{3}\, d}{d^2-J^2 \, e_{4}\, e_{8}}\right) \varepsilon _p C_{0,0,m(\beta ),0,0}, \end{aligned}$$
(A.26)
$$\begin{aligned} C_{0,1,m(\beta ),0,0}= & {} \left( \frac{J \,e_{3}\, e_{8}- e_{7}d}{d^2-J^2 e_{4} e_{8}}\right) \varepsilon _p C_{0,0,m(\beta ),0,0}, \end{aligned}$$
(A.27)
$$\begin{aligned} C_{0,0,m(\beta ),1,0}= & {} C_{0,0,m(\beta ),0,1} \nonumber \\= & {} \frac{g \exp (-\frac{G^2}{\omega _m^2})}{(E_{0,0,m(\beta ),1,0}-i \gamma _{a})(d + J \exp (-\frac{G^2}{\omega _m^2}))}\varepsilon _p C_{0,0,m(\beta ),0,0},\nonumber \\ \end{aligned}$$
(A.28)

where

$$\begin{aligned} d= (E_{1,0,m(\beta ),0,0}-i \gamma _{c})-\frac{g^2\, e_{2} \, e_{7}}{(E_{0,0,m(\beta ),1,0}-i \gamma _{a})}. \end{aligned}$$
(A.29)

Also, from solving Eqs. (A.5) to (A.12) we achieve the other coefficients as below,

$$\begin{aligned} C_{1,1,m(\beta ),0,0}= & {} \frac{ 1}{N_t} \bigg [ [(A_1 X_1 + A_2 X_2)\nonumber \\{} & {} +\, \frac{g}{\varDelta _t}( p_1 e_{4}+ p_2 e_{8}+ q_1 e_{3}+ q_2 e_{7})] \varepsilon _p C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} +\,\frac{\sqrt{2} \varepsilon _p e_{17}}{N^2-N_{m_1} N_{m_2}}[ A_1 N_{m_1}+A_2 N ] C_{0,1,m(\beta ),0,0} \nonumber \\{} & {} -\, \varepsilon _p ( C_{1,0,m(\beta ),0,0} e_{11} + C_{0,1,m(\beta ),0,0} e_{12}) \nonumber \\{} & {} +\,\frac{\sqrt{2} \varepsilon _p e_{15}}{N^2-N_{m_1} N_{m_2}} \left[ A_1 N +A_2 N_{m_2} \right] C_{1,0,m(\beta ),0,0}\bigg ], \end{aligned}$$
(A.30)
$$\begin{aligned} C_{2,0,m(\beta ),0,0}= & {} \left( \frac{1}{N^2-N_{m_1} N_{m_2}}\right) \nonumber \\{} & {} \bigg [ -\sqrt{2}J C_{1,1,m (\beta ),0,0} (e_{16} N + e_{18} N_{m_1}) \nonumber \\{} & {} -[(s_1 + s_2)N + (s^{\prime }_1+s^{\prime }_2)N_{m_1}] \varepsilon _p C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} -\sqrt{2} N_{m_1} \varepsilon _p e_{17} C_{0,1,m(\beta ),0,0} - \sqrt{2} N \varepsilon _p e_{15} C_{1,0,m(\beta ),0,0} \bigg ], \end{aligned}$$
(A.31)
$$\begin{aligned} C_{0,2,m(\beta ),0,0}= & {} \left( \frac{1}{N^2-N_{m_1} N_{m_2}}\right) \nonumber \\{} & {} \bigg [ -\sqrt{2}J C_{1,1,m (\beta ),0,0} (e_{18} N + e_{16} N_{m_2}) \nonumber \\{} & {} -[ (s^{\prime }_1+s^{\prime }_2) N + (s_1 + s_2)N_{m_2}] \varepsilon _p C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} -\sqrt{2} N_{m_2} \varepsilon _p e_{15} C_{1,0,m(\beta ),0,0} - \sqrt{2} N \varepsilon _p e_{17} C_{0,1,m(\beta ),0,0} \bigg ], \end{aligned}$$
(A.32)
$$\begin{aligned} C_{1,0,m(\beta ),1,0}= & {} \frac{1}{M^2- \varDelta _{m_1}\varDelta _{m_2}}\nonumber \\{} & {} \bigg [ (b_1 M -\varDelta _{m_1}a_2)\varepsilon _p e_{7} C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} +\, (b_2 \varDelta _{m_1} -a_1 M)\varepsilon _p e_{3} C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} -\, \sqrt{2}g \varDelta _{m_1} e_{10} C_{0,2,m(\beta ),0,0}\nonumber \\{} & {} - \sqrt{2}g M e_{6} C_{2,0,m(\beta ),0,0} \bigg ], \end{aligned}$$
(A.33)
$$\begin{aligned} C_{0,1,m(\beta ),0,1}= & {} \frac{1}{M^2- \varDelta _{m_1}\varDelta _{m_2}}\nonumber \\{} & {} \bigg [ (b_2 M -\varDelta _{m_2}a_1)\varepsilon _p e_{3} C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} +\, (b_1 \varDelta _{m_2} -a_2 M)\varepsilon _p e_{7} C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} -\, \sqrt{2}g \varDelta _{m_2} e_{6} C_{2,0,m(\beta ),0,0}\nonumber \\{} & {} -\, \sqrt{2}g M e_{10} C_{0,2,m(\beta ),0,0} \bigg ], \end{aligned}$$
(A.34)
$$\begin{aligned} C_{0,1,m(\beta ),1,0}= & {} \frac{1}{\varDelta _{t}} \bigg [ (E_{0,1,m(\beta ),1,0}-i(\gamma _c +\gamma _a)-\varDelta _g) J e_{8}C(1,0,m(\beta ),1,0) \nonumber \\{} & {} +\,(E_{0,1,m(\beta ),1,0}-i(\gamma _c +\gamma _a)-\varDelta _g)\varepsilon _p e_{7} C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} +\,\varDelta _{g_1}J e_{4}C_{0,1,m(\beta ),0,1}+\varDelta _{g_1}\varepsilon _p e_{3} C_{0,0,m(\beta ),1,0} \bigg ], \end{aligned}$$
(A.35)
$$\begin{aligned} C_{1,0,m(\beta ),0,1}= & {} \frac{1}{\varDelta _{t}} \bigg [ (E_{0,1,m(\beta ),1,0}-i(\gamma _c +\gamma _a)-\varDelta _g) J e_{4} C_{0,1,m(\beta ),0,1} \nonumber \\{} & {} +\,(E_{0,1,m(\beta ),1,0}-i(\gamma _c +\gamma _a)-\varDelta _g)\varepsilon _p e_{7} C_{0,0,m(\beta ),1,0} \nonumber \\{} & {} +\,\varDelta _{g_2}J e_{8} C_{1,0,m(\beta ),1,0}+\varDelta _{g_2}\varepsilon _p e_{7} C_{0,0,m(\beta ),1,0}\bigg ], \end{aligned}$$
(A.36)
$$\begin{aligned} C_{0,0,m(\beta ),1,1}= & {} -\frac{g}{E_{0,0,m(\beta ),1,1}-2i \gamma _{a}} \nonumber \\{} & {} \left[ C_{0,1,m(\beta ),1,0} e_2 + C_{1,0,m(\beta ),0,1} e_1\right] , \end{aligned}$$
(A.37)

where we have used the following notations to summarize the amplitudes,

$$\begin{aligned} N_{t}= & {} (E_{1,1,m(\beta ),0,0}-2i\gamma _c)-\frac{\sqrt{2} J}{N^2-N_{m_1}\, N_{m_2}}\\{} & {} \bigg [ A_1 (e_{16} \, N + e_{18}\,N_{m_1}) + A_2 (e_{18}\, N + e_{16}\, N_{m_2}) \bigg ],\\ A_{1}= & {} \sqrt{2}J \,e_{13}\, \\{} & {} +\, \frac{\sqrt{2}g^2 J q_1 \,e_4 \, e_6 \, \varDelta _{m_2} + \sqrt{2}g^2 \,J \,q_2 \,e_8\, e_6 \, M}{(M^2- \varDelta _{m_1}\, \varDelta _{m_2})\varDelta _t}, \\ A_{2}= & {} \sqrt{2}\,J \, e_{14} \\{} & {} +\, \frac{\sqrt{2}g^2 \,J \,q_1\, e_4 \,e_{10} \, M + \sqrt{2}g^2 \, J \, q_2\, e_8 \, e_{10}\, \varDelta _{m_1}}{(M^2- \varDelta _{m_1}\, \varDelta _{m_2})\varDelta _t},\\ X_1= & {} \frac{(s_1 + s_2)N + (s^\prime _1 + s^\prime _2)N_{m_1}}{N^2-N_{m_1}\, N_{m_2}},\\ X_2= & {} \frac{(s^\prime _1 + s^\prime _2)N + (s_1 + s_2)N_{m_2}}{N^2-N_{m_1}\, N_{m_2}}, \\ p_1= & {} \frac{J\, q_1}{M^2- \varDelta _{m_1}\, \varDelta _{m_2}}\bigg [ (b_2 \, M -a_1\, \varDelta _{m_2})\, e_3 \\{} & {} +\,(b_1 \, \varDelta _{m_2} - a_2 \, M) \,e_7 \bigg ],\\ p_2= & {} \frac{J \, q_2}{M^2- \varDelta _{m_1}\, \varDelta _{m_2}}\bigg [ (b_1\, M -a_2\, \varDelta _{m_1})\, e_7 \\{} & {} +\,(b_2 \, \varDelta _{m_1} - a_1 \, M)\, e_3 \bigg ],\\ q_1= & {} (E_{0,1,m(\beta ),1,0}-i(\gamma _c +\gamma _a)-\varDelta _g)e_{11}+ \varDelta _{g_1}\, e_{12},\\ q_2= & {} \varDelta _{g_2}\, e_{11}+(E_{0,1,m(\beta ),1,0}-i(\gamma _c +\gamma _a)-\varDelta _g)\, e_{12}, \\ N= & {} (E_{2,0,m(\beta ),0,0} -2i \gamma _c)-\frac{2g^2 \, M \, e_6 \, e_{15}}{M^2- \varDelta _{m_1}\, \varDelta _{m_2}}, \\ N_{m_1}= & {} \frac{2g^2 \varDelta _{m_1} \, e_{10} \, e_{15}}{M^2- \varDelta _{m_1}\, \varDelta _{m_2}}, \ \ N_{m_2}= \frac{2g^2 \varDelta _{m_2}\, e_6\, e_{17}}{M^2- \varDelta _{m_1} \, \varDelta _{m_2}},\\ s_1= & {} \frac{\sqrt{2} \, g \, e_7 \, e_{15}}{M^2- \varDelta _{m_1} \, \varDelta _{m_2}}(b_1 \, M -a_2 \, \varDelta _{m_1}), \\ s_2= & {} \frac{\sqrt{2} \, g \, e_3 \, e_{15}}{M^2- \varDelta _{m_1}\, \varDelta _{m_1}}(b_2\, M -a_1 \, \varDelta _{m_2}),\\ s^{\prime }_1= & {} \frac{\sqrt{2} \, g \, e_7\, e_{17}}{M^2- \varDelta _{m_1}\, \varDelta _{m_2}}(b_2 \, M -a_1\, \varDelta _{m_2}), \\ s^{\prime }_2= & {} \frac{\sqrt{2} \,g \, e_7 \, e_{17}}{M^2- \varDelta _{m_1}\, \varDelta _{m_2}}(b_1 \, \varDelta _{m_2} -a_2 \, M), \\ a_1= & {} 1-\frac{J \, \varDelta _{g_1}\, e_4}{\varDelta _t}, \ \ a_2 = 1-\frac{J \varDelta _{g_2}e_8}{\varDelta _t}, \\ b_1= & {} \frac{J e_4 (E_{1,0,m(\beta ),1,0}-i(\gamma _c+\gamma _a)-\varDelta _{g})}{\varDelta _t},\\ b_2= & {} \frac{J \, e_8 (E_{1,0,m(\beta ),1,0}-i(\gamma _c+\gamma _a)-\varDelta _{g})}{\varDelta _t}, \\ \varDelta _{m_1}= & {} \frac{J^2 e_4 ^2 \varDelta _{g_1}}{\varDelta _t}, \, \, \varDelta _{m_2}=\frac{J^2 e_8 ^2 \varDelta _{g_2}}{\varDelta _t},\\ M= & {} (E_{1,0,m(\beta ),1,0}-i(\gamma _c+\gamma _a)) \\{} & {} -\,\frac{J^2\, e_4 \, e_8 (E_{1,0,m(\beta ),1,0}-i(\gamma _c+\gamma _a)-\varDelta _{g})}{\varDelta _t},\\ \varDelta _{t}= & {} (E_{1,0,m(\beta ),1,0}-i(\gamma _c+\gamma _a)-\varDelta _{g})^2-\varDelta _{g_1}\varDelta _{g_2},\\ \varDelta _g= & {} \frac{g^2\, e_2 \, e_7}{E_{0,0,m(\beta ),1,1}-2i\gamma _a}, \\ \varDelta _{g_1}= & {} \frac{g^2 e_1 e_7}{E_{0,0,m(\beta ),1,1}-2i\gamma _a}, \\ \varDelta _{g_2}= & {} \frac{g^2 \, e_2 \, e_3}{E_{0,0,m(\beta ),1,1}-2i\gamma _a}, \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegarzadeh, M., Tavassoly, M.K. & Hassani Nadiki, M. Single-photon blockade in a hybrid optomechanical system involving two qubits in the presence of phononic number and coherent states. Quantum Inf Process 22, 95 (2023). https://doi.org/10.1007/s11128-023-03840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03840-6

Keywords

Navigation