Skip to main content
Log in

Statistical fluctuation analysis for decoy-state quantum secure direct communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In quantum secure direct communication (QSDC), messages are transmitted directly through quantum channels. The decoy state scheme has been widely studied to detect eavesdroppers and improve the secrecy capacity. However, the secret key rate becomes relatively low in this scheme because of the finite-size effect. In this study, the statistical fluctuation analyses of a four-intensity decoy-state QSDC system were performed, and a numerical simulation was conducted in an actual experimental environment. The simulation results were compared, and the parameters optimized using the Gaussian analysis and the Chernoff bound were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. arXiv preprint arXiv:2003.06557, (2020)

  2. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  7. Fu-Guo, D., Gui, L.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  8. Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  9. Hu, J.-Y., Ming-Yong Jing, B.Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144–e16144 (2016)

    Article  Google Scholar 

  10. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  11. Zhu, F.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Article  Google Scholar 

  12. Qi, Ruoyang, Sun, Zhen, Lin, Zaisheng, Niu, Penghao, Hao, Wentao, Song, Liyuan, Huang, Qin, Gao, Jiancun, Yin, Liuguo, Long, Gui-Lu.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 1–8 (2019)

    Article  Google Scholar 

  13. Pan, D., Lin, Z.: Experimental free-space quantum secure direct communication and its security analysis. Photonics Res. 8(9), 1522–1531 (2020)

    Article  Google Scholar 

  14. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  16. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)

    Article  ADS  Google Scholar 

  17. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  18. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  19. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  20. Curty, M., Feihu, X., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  21. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3(1), 1–6 (2012)

    Article  Google Scholar 

  22. Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95(1), 012333 (2017)

    Article  ADS  Google Scholar 

  23. Trushechkin, A.S., Kiktenko, E.O., Fedorov, A.K.: Practical issues in decoy-state quantum key distribution based on the central limit theorem. Phys. Rev. A 96(2), 022316 (2017)

    Article  ADS  Google Scholar 

  24. Park, J., Lee, J., Heo, J.: Improved statistical fluctuation analysis for twin-field quantum key distribution. Quantum Inf. Process. 20(4), 1–9 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Biswas, A., Banerji, A., Lal, N., Chandravanshi, P., Kumar, R., Singh, R.P.: Quantum key distribution with multiphoton pulses: an advantage. Opt. Contin. 1(1), 68–79 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2022-0-00463, Development of a quantum repeater in optical fiber networks for quantum internet). This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2023-2021-0-01810) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Heo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, B. & Heo, J. Statistical fluctuation analysis for decoy-state quantum secure direct communication. Quantum Inf Process 22, 112 (2023). https://doi.org/10.1007/s11128-023-03845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03845-1

Keywords

Navigation