Skip to main content
Log in

Intracavity-squeezed cooling in the three-cavity optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An intracavity-squeezed cooling scheme is proposed for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system. It is found that in the presence of optical parametric amplifier (OPA) medium, the scheme is capable of completely inhibiting the quantum backaction heating process. Specifically, as the heating rate decreases to zero, and the net cooling rate increases, so the final phonon number decreases significantly. There are no strict requirements for the two auxiliary cavities, and the final phonon number can be less than 1 in a larger range. This scheme provides a novel idea for the subsequent ground-state cooling research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kippenberg, T.J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.J.: Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95(3), 033901 (2005)

    ADS  Google Scholar 

  2. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321(5893), 1172–1176 (2008)

    ADS  Google Scholar 

  3. Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. 525(3), 215–233 (2013)

    MATH  Google Scholar 

  4. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014)

    ADS  Google Scholar 

  5. Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108(15), 153603 (2012)

    ADS  Google Scholar 

  6. Bienert, M., Morigi, G.: Cavity cooling of a trapped atom using electromagnetically induced transparency. New J. Phys. 14, 023002 (2012)

    ADS  Google Scholar 

  7. Kubala, B., Ludwig, M., Marquardt, F.: Optomechanics NATO advanced research workshop on recent advances in nonlinear dynamics and complex system physics-from natural to social sciences and security. Tashkent, Uzbekistan (2008)

  8. Yan, X.B.: Optomechanically induced transparency and gain. Phys. Rev. A 101(4), 043820 (2020)

    ADS  Google Scholar 

  9. Jiang, C., Song, L.N., Li, Y.: Directional phase-sensitive amplifier between microwave and optical photons. Phys. Rev. A 99(2), 023823 (2019)

    ADS  Google Scholar 

  10. Jiao, Y.F., Lu, T.X., Jing, H.: Optomechanical second-order sidebands and group delays in a Kerr resonator. Phys. Rev. A 97(1), 013843 (2018)

    ADS  Google Scholar 

  11. Lu, T.X., Jiao, Y.F., Zhang, H.L., Saif, F., Jing, H.: Selective and switchable optical amplification with mechanical driven oscillators. Phys. Rev. A 100(1), 013813 (2019)

    ADS  Google Scholar 

  12. Wu, Q.: Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system. Chin. Phys. B 25(1), 010304 (2016)

    Google Scholar 

  13. Xiao, X., Liao, Q.H., Zhou, N.R., Nie, W.J., Liu, Y.C.: Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system. Sci. China-Phys. Mech. Astron. 63(11), 114211 (2020)

    ADS  Google Scholar 

  14. Cho, J., Angelakis, D.G., Bose, S.: Heralded generation of entanglement with coupled cavities. Phys. Rev. A 78(2), 022323 (2008)

    ADS  Google Scholar 

  15. Ludwig, M., Safavi-Naeini, A.H., Painter, O., Marquardt, F.: Enhanced quantum nonlinearities in a two-mode optomechanical system. Phys. Rev. Lett. 109(6), 063601 (2012)

    ADS  Google Scholar 

  16. Srinivasan, K., Miao, H.X., Rakher, M.T., Davanco, M., Aksyuk, V.: Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator. Nano Lett. 11(2), 791–797 (2011)

    ADS  Google Scholar 

  17. Tian, L.: Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108(15), 153604 (2012)

    ADS  Google Scholar 

  18. Huang, S., Agarwal, G.S.: Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light. New J. Phys. 11, 103044 (2009)

    ADS  Google Scholar 

  19. Li, J., Haghighi, I.M., Malossi, N., Zippilli, S., Vitali, D.: Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics. New J. Phys. 17, 103037 (2015)

    ADS  Google Scholar 

  20. Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89(1), 014302 (2014)

    ADS  Google Scholar 

  21. Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerrriro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007)

    ADS  Google Scholar 

  22. Wollman, E.E., Lei, C.U., Weinstein, A.J., Suh, J., Kronwald, A., Marquardt, F., Clerk, A.A., Schwab, K.C.: Quantum squeezing of motion in a mechanical resonator. Science 349(6251), 952–955 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Paternostro, M.: Engineering nonclassicality in a mechanical system through photon subtraction. Phys. Rev. Lett. 106(18), 183601 (2011)

    ADS  Google Scholar 

  24. Wang, G.L., Huang, L., Lai, Y.C., Grebogi, C.: Nonlinear dynamics and quantum entanglement in optomechanical systems. Phys. Rev. Lett. 112(11), 110406 (2014)

    ADS  Google Scholar 

  25. Zhou, L., Pu, H., Zhang, K.Y., Zhao, X.D., Zhang, W.P.: Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate. Phys. Rev. A 84(4), 043606 (2011)

    ADS  Google Scholar 

  26. Yang, Q., Hou, B.P., Lai, D.G.: Local modulation of double optomechanically induced transparency and amplification. Opt. Express 25(9), 9697–9711 (2017)

    ADS  Google Scholar 

  27. Yan, X.B.: Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. B: At. Mol. Opt. Phys. 54(3), 035401 (2021)

    ADS  Google Scholar 

  28. Gu, K.H., Yan, X.B., Zhang, Y., Fu, C.B., Liu, Y.M., Wang, X., Wu, J.H.: Tunable slow and fast light in an atom-assisted optomechanical system. Opt. Commun. 338, 569–573 (2015)

    ADS  Google Scholar 

  29. Liao, Q.H., Xiao, X., Nie, W.J., Zhou, N.R.: Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express 28(4), 5288–5305 (2020)

    ADS  Google Scholar 

  30. Xia, C.C., Yan, X.B., Tian, X.D., Gao, F.: Ideal optical isolator with a two-cavity optomechanical system. Opt. Commun. 451, 197–201 (2019)

    ADS  Google Scholar 

  31. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99(9), 093901 (2007)

    ADS  Google Scholar 

  32. Xuereb, A., Freegarde, T., Horak, P., Domokos, P.: Optomechanical cooling with generalized interferometers. Phys. Rev. Lett. 105(1), 013602 (2010)

    ADS  Google Scholar 

  33. Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Groblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478(7367), 89–92 (2011)

    ADS  Google Scholar 

  34. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99(9), 093902 (2007)

    ADS  Google Scholar 

  35. Sarma, B., Busch, T., Twamley, J.: Optomechanical cooling by STIRAP-assisted energy transfer: an alternative route towards the mechanical ground state. New J. Phys. 22(10), 103043 (2021)

    Google Scholar 

  36. Van, der, Laan, F., Tebbenjohanns, F., Reimann, R., Vijayan, J., Novotny, L., Frimmer, M.: Sub-Kelvin feedback cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett. 127(12), 123605 (2021)

  37. Pyshkin, P.V., Luo, D.W., You, J.Q., Wu, L.A.: Ground-state cooling of quantum systems via a one-shot measurement. Phys. Rev. A 93(3), 032120 (2016)

    ADS  Google Scholar 

  38. Gan, J.H., Liu, Y.C., Lu, C.C., Wang, X., Tey, M.K., You, L.: Intracavity-squeezed optomechanical cooling. Laser Photon. Rev. 13(11), 1900120 (2019)

    ADS  Google Scholar 

  39. Liu, Y.M., Cheng, J., Wang, H.F., Yi, X.X.: Simultaneous cooling of two mechanical resonators with intracavity squeezed light. Ann. Phys. 533(8), 2100074 (2021)

    MathSciNet  Google Scholar 

  40. Yang, H.T., Yuan, Z.H., Zhu, A.D.: Simultaneous cooling of double oscillators in an optomechanical system with an optical parametric amplifier. Laser Phys. 31(6), 065203 (2021)

    ADS  MathSciNet  Google Scholar 

  41. Otterstrom, N.T., Behunin, R.O., Kittlaus, E.A., Rakich, P.T.: Optomechanical cooling in a continuous system. Phys. Rev. X 8(4), 041034 (2018)

    MATH  Google Scholar 

  42. Ockeloen-Korppi, C.F., Gely, M.F., Damskagg, E., Jenkins, M., Steele, G.A., Sillanpaa, M.A.: Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system. Phys. Rev. A 99(2), 023826 (2019)

    ADS  Google Scholar 

  43. Liao, Q.H., Dai, Y.Z., Nie, W.J., Liu, X., Liu, Y.C.: Cooling of mechanical resonator in a double-cavity system with two-level atomic ensemble. J. Phys. B: At. Mol. Opt. Phys. 53(8), 085402 (2020)

    ADS  Google Scholar 

  44. Wang, D.Y., Bai, C.H Liu, S.T., Zhang, S., Wang, H.F.: Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A 98(2), 023816 (2018)

  45. Xia, K.Y., Evers, J.: Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference. Phys. Rev. Lett. 103(22), 227203 (2009)

    ADS  Google Scholar 

  46. Triana, J.F., Estrada, A.F., Pachon, L.A.: Ultrafast optimal sideband cooling under non-Markovian evolution. Phys. Rev. Lett. 116(18), 183602 (2016)

    ADS  Google Scholar 

  47. MacQuarrie, E.R., Otten, M., Gray, S.K., Fuchs, G.D.: Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction. Nat. Commun. 8, 14358 (2017)

    ADS  Google Scholar 

  48. Asjad, M., Abari, N.E., Zippilli, S., Vitali, D.: Optomechanical cooling with intracavity squeezed light. Opt. Express 27(22), 32427–32444 (2019)

    ADS  Google Scholar 

  49. Wang, J.: Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime. Chin. Phys. B 30(2), 024204 (2021)

    ADS  Google Scholar 

  50. Huang, S., Agarwal, G.S.: Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 79(1), 013821 (2009)

    ADS  Google Scholar 

  51. Giovannetti, V., Vitali, D.: Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A 63(2), 023812 (2001)

    ADS  Google Scholar 

  52. Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82(2), 1155–1208 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Liu, Y.C., Xiao, Y.F., Luan, X.S., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110(15), 153606 (2013)

    ADS  Google Scholar 

  54. Liu, Y.L., Liu, Y.X.: Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. Phys. Rev. A 96(2), 023812 (2017)

    ADS  MathSciNet  Google Scholar 

  55. Anetsberger, G., Riviere, R., Schliesser, A., Arcizet, O., Kippenaerg, T.J.: Ultralow dissipation optomechanical resonators on a chip. Nat. Photonics 2(10), 627–633 (2008)

    Google Scholar 

  56. Genes, C., Ritsch, H., Drewsen, M., Dantan, A.: Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys. Rev. A 84(5), 051801 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

This Project was supported by the National Natural Science Foundation of China (Grant No. 62061028), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A-4), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202010), the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12), and the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-hong Liao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Qh., Zhu, Hy., Zou, C. et al. Intracavity-squeezed cooling in the three-cavity optomechanical system. Quantum Inf Process 22, 103 (2023). https://doi.org/10.1007/s11128-023-03847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03847-z

Keywords

Navigation