Skip to main content
Log in

On the distillability problem of two-copy \(4\times 4\) Werner states: matrices AB of at most four nonzero entries

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In entanglement theory, the long-standing distillability problem asks whether the two-copy \(4\times 4\) Werner states are distillable under local operations and classical communications. We report the partial solution to the problem when the involved \(4\times 4\) matrices A and B, respectively, have one and three nonzero entries. As a corollary, the problem is solved when A and B have at most four nonzero entries. Our result presents the latest progress on the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chen, L., He, H., Shi, X., Zhao, L.J.: Proving the distillability problem of two-copy 4x4 werner states for monomial matrices. Quantum Inf. Process. 20(4), 1–22 (2021)

    Article  ADS  MATH  Google Scholar 

  2. Bennett, Charles H., Brassard, Gilles, Crépeau, Claude, Jozsa, Richard, Peres, Asher, Wootters, William K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. DiVincenzo, David P., Shor, Peter W., Smolin, John A., Terhal, Barbara M., Thapliyal, Ashish V.: Evidence for bound entangled states with negative partial transpose. Phys. Rev. A 61, 062312 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Terhal, Barbara M.: A family of indecomposable positive linear maps based on entangled quantum states. Linear Algebra Appl. 323(1), 61–73 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Poon, Edward: Preservers of maximally entangled states. Linear Algebra Appl. 468(468), 122–144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cariello, Daniel: A gap for ppt entanglement. Linear Algebra Appl. 529, 89–114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hou, Jinchuan, Qi, Xiaofei: Linear maps preserving separability of pure states. Linear Algebra Appl. 439(5), 1245–1257 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alfsen, Erik, Shultz, Fred: Finding decompositions of a class of separable states. Linear Algebra Appl. 437(10), 2613–2629 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Woerdeman, Hugo J.: The separability problem and normal completions. Linear Algebra Appl. 376(1), 85–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horodecki, P., Rudnicki, U., Yczkowski, K.: Five open problems in quantum information. (2020)

  11. Pankowski, Michal Horodecki Aukasz., Piani, Marco, Horodecki, Pawel: A few steps more towards npt bound entanglement. IEEE Trans. Inf. Theory 56(8), 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dür, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Vianna, Reinaldo O., Doherty, Andrew C.: Distillability of werner states using entanglement witnesses and robust semidefinite programs. Phys. Rev. A 74, 052306 (2006)

    Article  ADS  Google Scholar 

  14. Bandyopadhyay, Somshubhro, Roychowdhury, Vwani: Classes of \(n\)-copy undistillable quantum states with negative partial transposition. Phys. Rev. A 68, 022319 (2003)

    Article  ADS  Google Scholar 

  15. Chen, Lin, Chen, Yi-Xin.: Rank-three bipartite entangled states are distillable. Phys. Rev. A 78, 022318 (2008)

    Article  ADS  Google Scholar 

  16. Horodecki, Michal, Horodecki, Pawel, Horodecki, Ryszard: Inseparable two spin- \(\frac{1}{2}\) density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574–577 (1997)

    Article  ADS  MATH  Google Scholar 

  17. Rains, E.M.: Bound on distillable entanglement. Phys. Rev. A 60, 179 (1999)

    Article  ADS  Google Scholar 

  18. Chen, Lin, Djokovicá, Dragomir Z.: Distillability and ppt entanglement of low-rank quantum states. J. Phys. A: Math. Theor. 44(28), 285303 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chen, Lin, Djokovicá, Dragomir Z.: Distillability of non-positive-partial-transpose bipartite quantum states of rank four. Phys. Rev. A 94, 052318 (2016)

    Article  ADS  Google Scholar 

  20. Chen, Lin, Friedland, Shmuel: The tensor rank of tensor product of two three-qubit W states is eight. Linear Algebra Appl. 543, 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Kai, Chen, Lin, Shen, Yi., Sun, Yize, Zhao, Li-Jun.: Constructing 2 \(\times \) 2 \(\times \) 4 and 4 \(\times \) 4 unextendible product bases and positive-partial-transpose entangled states. Linear Multilinear Algebra 0(0), 1–16 (2019)

    MATH  Google Scholar 

  22. Liang, Mengfan, Mengyao, Hu., Sun, Yize, Chen, Lin, Chen, Xiaoyu: Real entries of complex hadamard matrices and mutually unbiased bases in dimension six. Linear Multilinear Algebra 0(0), 1–18 (2019)

    MATH  Google Scholar 

  23. Qian, Lilong, Chen, Lin, Chu, Delin, Shen, Yi: A matrix inequality related to the entanglement distillation distillation problem

Download references

Acknowledgements

LC and HXH were supported by the National Key R &D Program of China under Grant No. 2018YFC2001400. LC and CCF were supported by the NNSF of China (Grant No. 11871089) and the Fundamental Research Funds for the Central Universities (Grant Nos. KG12080401 and ZG216S1902). HXH was supported by the NNSF of China (Grant No. 12271038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The proof of Lemma 4

Appendix A: The proof of Lemma 4

Proof

  1. (i)

    The proof is done in [1].

  2. (ii)

    Similarly to the proof of (i), one can show that the \(4\times 4\) matrix of three nonzero entries and trace zero is permutationally equivalent to one of the following matrices:

    $$\begin{aligned}{} & {} \begin{bmatrix} a_1 &{} 0 &{} 0 &{} 0\\ 0 &{} a_2 &{} 0 &{} 0\\ 0 &{} 0 &{} -a_1-a_2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} b_1 &{} b_2 &{} 0 &{} 0\\ 0 &{} -b_1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} c_1 &{} 0 &{} c_2 &{} 0\\ 0 &{} -c_1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} d_1 &{} 0 &{} 0 &{} 0\\ 0 &{} -d_1 &{} 0 &{} 0\\ d_2 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix},\nonumber \\ \end{aligned}$$
    (A1)
    $$\begin{aligned}{} & {} \begin{bmatrix} f_1 &{} 0 &{} 0 &{} 0\\ 0 &{} -f_1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} f_2\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} g_1 &{} g_2 &{} 0\\ g_3 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} h_1 &{} h_2 &{} 0\\ 0 &{} 0 &{} h_3 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} i_1 &{} i_2 &{} 0\\ 0 &{} 0 &{} 0 &{} i_3\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \end{aligned}$$
    (A2)
    $$\begin{aligned}{} & {} \begin{bmatrix} 0 &{} i_1' &{} i_2' &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ i_3' &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} i_1'' &{} i_2'' &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} i_3'' &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} i_1''' &{} i_2''' &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} i_3'''\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} j_1 &{} j_2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ j_3 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \end{aligned}$$
    (A3)
    $$\begin{aligned}{} & {} \begin{bmatrix} 0 &{} k_1 &{} k_2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} k_3 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} l_1 &{} 0 &{} 0\\ l_2 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} l_3\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} m_1 &{} 0 &{} 0\\ 0 &{} 0 &{} m_2 &{} 0\\ m_3 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} n_1 &{} 0 &{} 0\\ 0 &{} 0 &{} n_2 &{} 0\\ 0 &{} 0 &{} 0 &{} n_3\\ 0 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \end{aligned}$$
    (A4)
    $$\begin{aligned}{} & {} \begin{bmatrix} 0 &{} p_1 &{} 0 &{} 0\\ 0 &{} 0 &{} p_2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ p_3 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} q_1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ q_2 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} q_3 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} s_1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} s_2\\ s_3 &{} 0 &{} 0 &{} 0\\ \end{bmatrix}, \quad \begin{bmatrix} 0 &{} t_1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} t_2\\ 0 &{} 0 &{} t_3 &{} 0\\ \end{bmatrix}. \end{aligned}$$
    (A5)

    One can show that the third and fourth matrices in (A1) are unitarily equivalent, the first three matrices in (A3) are unitarily equivalent to the matrices in (A1), and the fourth matrix in (A3) is unitarily equivalent to a monomial matrix of at least two nonzero entries. Further, the fourth matrix in (A4) and the first matrix in (A5) are unitarily equivalent, the second matrix in (A4) and the second matrix in (A5) are unitarily equivalent, the second and third matrices in (A5) are permutationally equivalent, and the fourth matrix in (A5) is permutationally equivalent to the second matrix in (A4). We have proven the assertion.

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Feng, C. & He, H. On the distillability problem of two-copy \(4\times 4\) Werner states: matrices AB of at most four nonzero entries. Quantum Inf Process 22, 108 (2023). https://doi.org/10.1007/s11128-023-03850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03850-4

Navigation