Skip to main content

Advertisement

Log in

Measurement-device-independent three-party quantum secure direct communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure direct communication (QSDC) can directly transmit secure messages through quantum channel without sharing keys. Three-party (3P) QSDC enables two communication parties synchronously transmit secret messages to a third party through the quantum channels. Previous 3P-QSDC protocols all require ideal and trusted measurement devices, which are hard to realize under current experimental condition. Practical imperfect measurement devices would bring security loophole in the 3P-QSDC. In the paper, we propose a measurement-device-independent (MDI) 3P-QSDC protocol based on the polarization-spatial-mode hyperentanglement, which can resist all possible attacks from practical imperfect measurement devices. Our protocol is unconditionally secure in theory and can enhance 3P-QSDC’s security under practical experimental condition. In one round of communication, two parties can each send 2 bits of secure messages to the third party. Our MDI-3P-QSDC protocol has application potential in future multipartite quantum communication field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

The authors declare that all data and models generated or used during the study appear in the submitted article.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  MATH  Google Scholar 

  3. Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Fund. Res. 1, 43–49 (2021)

    Google Scholar 

  4. Pandey, R.K., Prakash, R., Prakash, H.: High success standard quantum teleportation using entangled coherent state and two-level atoms in cavities. Quant. Inform. Process. 20, 322 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Wang, T.J., Long, G.L.: Two-copy quantum teleportation based on GHZ measurement. Quant. Inform. Process. 19, 205 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proceedings of the IEEE international conference on computers, systems, and signal processing, pp.175. IEEE, New York (1984)

  7. Ekert, A.K.: Quantum crytography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Acín, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    ADS  Google Scholar 

  9. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  10. Wang, S., Yin, Z.Q., Chen, W., et al.: Experimental demonstration of quantum key distribution without monitoring of the signal disturbance. Nat. Photon. 9, 832–836 (2015)

    ADS  Google Scholar 

  11. Xu, F.H., Ma, X.F., Zhang, Q., et al.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    ADS  MathSciNet  Google Scholar 

  12. Zhao, S., Zeng, P., Cao, W.F., et al.: Phase-matching quantum cryptographic conferencing. Phys. Rev. Appl. 14, 024010 (2020)

    ADS  Google Scholar 

  13. Jin, A.R., Zeng, P., Penty, R.V., et al.: Reference-frame-independent design of phase-matching quantum key distribution. Phys. Rev. Appl. 16, 034017 (2021)

    ADS  Google Scholar 

  14. Chen, Y.A., Zhang, Q., Chen, T.Y., et al.: An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589, 214–219 (2021)

    ADS  Google Scholar 

  15. Kwek, L.C., Cao, L., Luo, W., et al.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    ADS  Google Scholar 

  16. Yin, Z.Q., Lu, F.Y., Teng, J., et al.: Twin-field protocols: towards intercity quantum key distribution without quantum repeaters. Fund. Res. 1, 93–95 (2021)

    Google Scholar 

  17. Guo, H., Li, Z.Y., Yu, S.: Toward practical quantum key distribution using telecom components. Fund. Res. 1, 96–98 (2021)

    Google Scholar 

  18. Tang, G.Z., Li, C.Y., Wang, M.: Polarization discriminated time-bin phase-encoding measurement-device-independent quantum key distribution. Quant. Eng. 3, e79 (2021)

    Google Scholar 

  19. Wang, X.F., Sun, X.J., Liu, Y.X.: Transmission of photonic polarization states from geosynchronous earth orbit satellite to the ground. Quant. Eng. 3, e73 (2021)

    Google Scholar 

  20. Liu, W.B., Li, C.L., Xie, Y.M., et al.: Homodyne detection quadrature phase shift keying continuous-variable quantum key distribution with high excess noise tolerance. PRX Quant. 2, 040334 (2021)

    ADS  Google Scholar 

  21. Hajji, H., El-Baz, M.: Qutrit-based semi-quantum key distribution protocol. Quant. Inform. Process. 20, 4 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Zhang, C.Y., Zheng, Z.J.: Entanglement-based quantum key distribution with untrusted third party. Quant. Inform. Process. 20, 146 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Xie, Y.M., Lu, Y.S., Weng, C.X., et al.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quant. 3, 020315 (2022)

    ADS  Google Scholar 

  24. Wang, S., Yin, Z.Q., He, D.Y., et al.: Twin-field quantum key distribution over 830 km fibre. Nat. Photon. 16, 154 (2022)

    ADS  Google Scholar 

  25. Gu, J., Cao, X.Y., Fu, Y., He, Z.W., Yin, Z.J., Yin, H.L., Chen, Z.B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Sci. Bull. 67, 2167 (2022)

    Google Scholar 

  26. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution Scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  27. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  28. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    ADS  Google Scholar 

  29. Wang, C., Deng, F.G., Li, Y.S.: Quantum secure direct communication with high-dimension quantum hyperdense coding. Phys. Rev. A 71, 044305 (2005)

    ADS  Google Scholar 

  30. Jin, X.R., Ji, X., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006)

    ADS  Google Scholar 

  31. Wang, M.Y., Yan, F.L.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Phys. Lett. A 24, 2486 (2007)

    Google Scholar 

  32. Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284, 515 (2011)

    ADS  Google Scholar 

  33. Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Google Scholar 

  34. Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  35. Zhu, F., Zhang, W., Sheng, Y.B., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)

    Google Scholar 

  36. Qi, R.Y., Sun, Z., Lin, Z.S., et al.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22 (2019)

    ADS  Google Scholar 

  37. Pan, D., Lin, Z.S., Wu, J.W., et al.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8, 1522–1531 (2020)

    Google Scholar 

  38. Qi, Z.T., Li, Y.H., Huang, Y.W., et al.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)

    ADS  Google Scholar 

  39. Sun, Z., Song, L., Huang, Q., et al.: Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design. IEEE Trans. Commun. 68, 5778–5792 (2020)

    Google Scholar 

  40. Zhang, H.R., Sun, Z., Qi, R.Y., et al.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83 (2022)

    ADS  Google Scholar 

  41. Long, G.L., Pan, D., Sheng, Y.B., Xue, Q.K., Lu, J.H., Hanzo, L.: An evolutionary pathway for the quantum internet relying on secure classical repeaters. IEEE Netw. 36, 82–88 (2022)

    Google Scholar 

  42. Chen, S.S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)

    Google Scholar 

  43. Niu, P.H., Zhou, Z.R., Lin, Z.S., et al.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345–1350 (2018)

    Google Scholar 

  44. Zhou, Z.R., Sheng, Y.B., Niu, P.H., et al.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    ADS  Google Scholar 

  45. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Google Scholar 

  46. Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: High-capacity measurement-device-independent quantum secure direct communication. Quant. Inf. Process. 19, 354 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Liu, L., Niu, J.L., Fan, C.R., Feng, X.T., Wang, C.: High-dimensional measurement-device-independent quantum secure direct communication. Quant. Inf. Process. 19, 404 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quant. Engin. 1, e26 (2019)

    Google Scholar 

  49. Niu, P.H., Wu, J.W., Yin, L.G., Long, G.L.: Security analysis of measurement-device-independent quantum secure direct communication. Quant. Inf. Process. 19, 356 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Yang, L., Wu, J.W., Lin, Z.S., et al.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. Mech. Astron. 63, 110311 (2020)

    ADS  Google Scholar 

  51. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys. 22, 063017 (2020)

    ADS  MathSciNet  Google Scholar 

  52. Wang, C.: Quantum secure direct communication: intersection of communication and cryptography. Fund. Res. 1, 91 (2021)

    Google Scholar 

  53. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267–1269 (2021)

    Google Scholar 

  54. Cao, Z.W., Wang, L., Liang, K.X., et al.: Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl. 16, 024012 (2021)

    ADS  Google Scholar 

  55. Liu, X., Li, Z.J., Luo, D., Huang, C.F., Ma, D., Geng, M.M., Wang, J.W., Zhang, Z.R., Wei, K.J.: Practical decoy-state quantum secure direct communication. Sci. China Phys. Mech. Astron. 64, 120311 (2021)

    ADS  Google Scholar 

  56. Rong, Z.B., Qiu, D.W., Mateus, P., Zou, X.F.: Mediated semi-quantum secure direct communication. Quant. Inform. Process. 20, 58 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367–374 (2022)

    Google Scholar 

  58. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)

    ADS  Google Scholar 

  59. Ying, J.W., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B 31, 120303 (2022)

    ADS  Google Scholar 

  60. Wang, P., Chen, X.H., Sun, Z.W.: Semi-quantum secure direct communication against collective-dephasing noise. Quant. Inform. Process. 21, 352 (2022)

    ADS  MathSciNet  Google Scholar 

  61. Huang, Z.M., Rong, Z.B., Zou, X.F., He, Z.M.: Semi-quantum secure direct communication in the curved spacetime. Quant. Inform. Process. 20, 375 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Liu, X., Luo, Di., Lin, G.S., et al.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron 65, 120311 (2022)

    ADS  Google Scholar 

  63. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyper-entangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    ADS  Google Scholar 

  64. Wyner, A.D.: The wire-tap channel. Bell System Tech. J. 54, 1355–1387 (1975)

    MathSciNet  MATH  Google Scholar 

  65. Hu, X.M., Huang, C.X., Sheng, Y.B., et al.: Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021)

    ADS  Google Scholar 

  66. Ma, X.F., Fung, C.H.F., Lo, H.K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)

    ADS  Google Scholar 

  67. Takesue, H., Harada, K., Tamaki, K., Fukuda, H., Tsuchizawa, T., Watanabe, T., Yamada, K., Itabashi, S.: Long-distance entanglement-based quantum key distribution experiment using practical detectors. Opt. Exp. 18, 16777–16787 (2010)

    Google Scholar 

  68. Ren, B.C., Wei, H.R., Hua, M., et al.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Exp. 20, 24664–24677 (2012)

    Google Scholar 

  69. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    ADS  Google Scholar 

  70. Wang, G.Y., Ai, Q., Ren, B.C., et al.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Exp. 24, 28444–28458 (2016)

    Google Scholar 

  71. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)

    ADS  Google Scholar 

  72. Wang, T.J., Wang, C.: Nonlocal hyperconcentration on entangled photons using photonic module system. Sci. Rep. 6, 19497 (2016)

    ADS  MATH  Google Scholar 

  73. Gao, C.Y., Ren, B.C., Zhang, Y.X.: Universal linear-optical hyper-entangled Bell-state measurement. Appl. Phys. Exp. 13, 027004 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11974189 and 12175106, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No. 20KJB140001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Ethics declarations

Conflict of interest statement

The authors declare that there are not any possible conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, YP., Zhou, L., Zhong, W. et al. Measurement-device-independent three-party quantum secure direct communication. Quantum Inf Process 22, 111 (2023). https://doi.org/10.1007/s11128-023-03853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03853-1

Keywords