Skip to main content
Log in

Two schemes for generating four-photon cluster states based on quantum dot microcavity coupling systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose two schemes that generate four-photon cluster states based on quantum dot microcavity coupling systems. In the first scheme, the four-photon cluster state is generated from four single-photon states assisted by three quantum dot nondemolition detectors. In the second scheme, a photon polarization controlled-Z (C-Z) gate is constructed firstly by exploiting a quantum dot microcavity coupling system, and then the four-photon cluster state is generated from two EPR pairs, which come from currently available spontaneous parametric down-conversion technique. Both nondemolition detectors and a photon polarization C-Z gate are realized by quantum dot microcavity coupling systems, which can be realized with near unity success probability and nearly perfect fidelity as the side leakage rate is small and the coupling strength is strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  2. Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005). https://doi.org/10.1103/PhysRevA.72.012326

    Article  ADS  Google Scholar 

  3. Basso Basset, F., Valeri, M., Roccia, E., Muredda, V., Poderini, D., Neuwirth, J., Spagnolo, R., Michele, B., Carvacho, G., Sciarrino, F., Trotta, R.: Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, 6379 (2021). https://doi.org/10.1126/sciadv.abe6379

    Article  ADS  Google Scholar 

  4. Li, W., Wang, L., Zhao, S.M.: Extended single-photon entanglement-based phase-matching quantum key distribution. Quant. Inf. Process. 21, 124 (2022). https://doi.org/10.1007/s11128-022-03464-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998). https://doi.org/10.1103/PhysRevLett.80.1121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kazemikhah, P., Aghababa, H.: Bidirectional quantum teleportation of an arbitrary number of qubits by using four qubit cluster state. Int. J. Theoret. Phys. 60, 378–386 (2021). https://doi.org/10.1007/s10773-020-3380-4704-w

  8. He, W.T., Wang, J., Zhang, T.T., Alzahrani, F., Hobiny, A., Alsaedi, A., Hayat, T., Deng, F.G.: High-efficiency three-party quantum key agreement protocol with quantum dense coding and bell states. Int. J. Theor. Phys. 58, 2834–2846 (2019). https://doi.org/10.1007/s10773-019-04167-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, J., Peng, K.C.: Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a bell state. Phys. Rev. A 62, 064302 (2000). https://doi.org/10.1103/PhysRevA.62.064302

    Article  ADS  Google Scholar 

  10. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267–1269 (2021). https://doi.org/10.1016/j.scib.2021.04.016

    Article  Google Scholar 

  11. Huang, Z.M., Rong, Z.B., Zou, X.F., He, Z.M.: Semi-quantum secure direct communication in the curved spacetime. Quant. Inf. Process. 20, 375 (2021). https://doi.org/10.1007/s11128-021-03316-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bai, C.M., Zhang, S.J., Liu, L.: Quantum secret sharing for a class of special hypergraph access structures. Quant. Inf. Process. 21, 119 (2022). https://doi.org/10.1007/s11128-022-03425-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001). https://doi.org/10.1103/PhysRevLett.86.5188

    Article  ADS  MATH  Google Scholar 

  14. Chen, K., Li, C.-M., Zhang, Q., Chen, Y.A., Goebel, A., Chen, S., Mair, A., Pan, J.W.: Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Phys. Rev. Lett. 99, 120503 (2007). https://doi.org/10.1103/PhysRevLett.99.120503

    Article  ADS  Google Scholar 

  15. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005). https://doi.org/10.1038/nature03347

    Article  ADS  Google Scholar 

  16. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001). https://doi.org/10.1103/PhysRevLett.86.910

    Article  ADS  Google Scholar 

  17. Walther, P., Aspelmeyer, M., Resch, K.J., Zeilinger, A.: Experimental violation of a cluster state bell inequality. Phys. Rev. Lett. 95, 020403 (2005). https://doi.org/10.1103/PhysRevLett.95.020403

    Article  ADS  Google Scholar 

  18. Li, D.C., Cao, Z.L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007). https://doi.org/10.1088/0253-6102/47/3/017

    Article  ADS  Google Scholar 

  19. Shi, Y., Waks, E.: Deterministic generation of multidimensional photonic cluster states using time-delay feedback. Phys. Rev. A 104, 013703 (2021). https://doi.org/10.1103/PhysRevA.104.013703

    Article  ADS  Google Scholar 

  20. Zou, X.B., Mathis, W.: Generating a four-photon polarization-entangled cluster state. Phys. Rev. A 71, 032308 (2005). https://doi.org/10.1103/PhysRevA.71.032308

    Article  ADS  Google Scholar 

  21. Park, H.S., Cho, J., Lee, J.Y., Lee, D.H., Choi, S.K.: Two-photon four-qubit cluster state generation based on a polarization-entangled photon pair. Opt. Express 15, 17960 (2007). https://doi.org/10.1364/OE.15.017960

    Article  ADS  Google Scholar 

  22. Zhu, M.Z., Yuan, G.Y.: Efficient scheme for preparing polarization-entangled photonic cluster states based on cross-Kerr nonlinearity. Int. J. Quant. Inf. 9, 1319–1327 (2011). https://doi.org/10.1142/S0219749911007915

    Article  MATH  Google Scholar 

  23. Dong, L., Wang, J.X., Xiu, X.M., Dong, H.K., Li, D., Gao, Y.J.: A generation scheme of the distributed four-photon cluster-type polarization-entangled states exploiting the integration of entanglement gates and the controlled phase gate. Int. J. Quant. Inf. 11, 1350064 (2013). https://doi.org/10.1142/S0219749913500640

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiu, X.M., Dong, L., Shen, H.Z., Gao, Ya.Jun., Yi, X.X.: Preparing, linking, and unlinking cluster-type polarization-entangled states by integrating modules. Progr. Theoret. Exp. Phys. 2013, 093A01 (2013). https://doi.org/10.1093/ptep/ptt069

  25. Ji, Y.Q., Jin, Z., Zhu, A.D., Wang, H.F., Zhang, S.: Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection. Chin. Phys. B 23, 050306 (2014). https://doi.org/10.1088/1674-1056/23/5/050306

    Article  ADS  Google Scholar 

  26. Zhang, J.L., Su, S.L., Zhang, S., Zhu, A.D., Wang, H.F.: Complete and nondestructive polarization-entangled cluster state analysis assisted by a cavity input-output process. J. Opt. Soc. Am. B 33, 342 (2016). https://doi.org/10.1364/JOSAB.33.000342

    Article  ADS  Google Scholar 

  27. Feng, L.T., Zhang, M., Zhou, Z.Y., Chen, Y., Li, M., Dai, D.X., Ren, H.L., Guo, G.P., Guo, G.C., Tame, M., Ren, X.F.: Generation of a frequency-degenerate four-photon entangled state using a silicon nanowire. NPJ Quant. Inf. 5, 90 (2019). https://doi.org/10.1038/s41534-019-0205-4

    Article  ADS  Google Scholar 

  28. Tiurev, K., Appel, M.H., Mirambell, P.L., Lauritzen, M.B., Tiranov, A., Lodahl, P., Sørensen, A.: High-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Phys. Rev. A 105, L030601 (2022). https://doi.org/10.1103/PhysRevA.105.L030601

    Article  ADS  Google Scholar 

  29. Djordjevic, I. B.: Cluster state-based quantum computing. Quant. Inf. Process. Quant. Comput. Quant. Error Correct. 531–561 (2021). https://doi.org/10.1016/B978-0-12-821982-9.00004-6

  30. Ju, L., Yang, M., Xue, P.: A proposal for preparation of cluster states with linear optics. Chin. Phys. B 30, 030306 (2021). https://doi.org/10.1088/1674-1056/abd74b

    Article  ADS  Google Scholar 

  31. Hu, C.Y.: Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors. Phys. Rev. B 94, 245307 (2016). https://doi.org/10.1103/PhysRevB.94.245307

    Article  ADS  Google Scholar 

  32. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013). https://doi.org/10.1103/PhysRevA.87.022305

    Article  ADS  Google Scholar 

  33. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). https://doi.org/10.1103/PhysRevA.57.120

    Article  ADS  Google Scholar 

  34. Moody, G., McDonald, C., Feldman, A., Harvey, T., Mirin, R.P., Silverman, K.L.: Electronic enhancement of the exciton coherence time in charged quantum dots. Phys. Rev. Lett. 116, 037402 (2016). https://doi.org/10.1103/PhysRevLett.116.037402

    Article  ADS  Google Scholar 

  35. Dusanowski, Ł, Nawrath, C., Portalupi, S.L., Jetter, M., Huber, T., Klembt, S., Michler, P., Höfling, S.: Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nat. Commun. 13, 748 (2022). https://doi.org/10.1038/s41467-022-28328-2

    Article  ADS  Google Scholar 

  36. Vajner, D.A., Rickert, L., Gao, T., Kaymazlar, K., Heindel, T.: Quantum communication using semiconductor quantum dots. Adv. Quant. Technol. 5, 2100116 (2022). https://doi.org/10.1002/qute.202100116

    Article  Google Scholar 

  37. Li, J.X., Dwivedi, P., Kumar, K.S., Roy, T., Crawford, K.E., Thomas, J.: Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv. Electron. Mater. 7, 2000535 (2021). https://doi.org/10.1002/aelm.202000535

    Article  Google Scholar 

  38. Rudno-Rudziński, W., Burakowski, M., Reithmaier, J.P., Musiał, A., Benyoucef, M.: Magneto-optical characterization of trions in symmetric INP-based quantum dots for quantum communication applications. Materials 14, 1–15 (2021). https://doi.org/10.3390/ma14040942

    Article  Google Scholar 

  39. Li, X.W., Cai, W.S., Guan, H.L., Zhao, S.Y., Cao, S.L., Chen, C., Liu, M., Zang, Z.G.: Highly stable cspbbr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem. Eng. J. 419, 129551 (2021). https://doi.org/10.1016/j.cej.2021.129551

    Article  Google Scholar 

  40. Arakawa, Y., Holmes, M.J.: Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview. Appl. Phys. Rev. 7, 021309 (2020). https://doi.org/10.1063/5.0010193

    Article  ADS  Google Scholar 

  41. Xu, Y., Guo, Q., Si, B., Cheng, L.Y., Wang, H.F., Zhang, S.: Generation of multi-photon Greenberger-Horne-Zeilinger states and cluster states through a quantum-dot spin in optical microcavity. Opt. Commun. 313, 294–298 (2014). https://doi.org/10.1016/j.optcom.2013.09.067

    Article  ADS  Google Scholar 

  42. Zhou, Y.S., Li, X., Deng, Y., Li, H.R., Luo, M.X.: Generation of hybrid four-qubit entangled decoherence-free states assisted by the cavity-QED system. Opt. Commun. 366, 397–403 (2016). https://doi.org/10.1016/j.optcom.2015.12.065

  43. Bai, C.H., Wang, D.Y., Shi, H., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-not gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quant. Inf. Process. 15, 1485–1498 (2016). https://doi.org/10.1007/s11128-015-1197-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Dong, L., Lv, L., Yang, Z.L., Liu, S.T., Wang, X.Y., Geng, X., Ren, Y.P., Ji, Y.Q., Xiu, X.M.: Deterministic preparation of a hyper-entangled three-photon asymmetric w state assisted by the single-sided qd-cavity system. Adv. Quant. Technol., 2200092 (2022). https://doi.org/10.1002/qute.202200092

  45. Wei, H.R., Deng, F.G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593 (2014). https://doi.org/10.1364/OE.22.000593

    Article  ADS  Google Scholar 

  46. Zheng, Y.Y., Liang, L.X., Zhang, M.: Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron. 62, 970312 (2019). https://doi.org/10.1007/s11433-018-9338-8

    Article  ADS  Google Scholar 

  47. Zhao, Z.L., Han, B.: Lie symmetry analysis of the Heisenberg equation. Commun. Nonlinear Sci. Numer. Simul. 45, 220–234 (2017). https://doi.org/10.1016/j.cnsns.2016.10.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997). https://doi.org/10.1038/37539

    Article  ADS  MATH  Google Scholar 

  49. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995). https://doi.org/10.1103/PhysRevLett.75.4337

    Article  ADS  Google Scholar 

  50. Żukowski, M., Zeilinger, A., Horne, M. A., Ekert, A. K.: Event-ready-detectors. Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993). https://doi.org/10.1103/PhysRevLett.45271.4287

  51. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996). https://doi.org/10.1103/PhysRevLett.76.4656

    Article  ADS  Google Scholar 

  53. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998). https://doi.org/10.1103/PhysRevLett.80.3891

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001). https://doi.org/10.1103/PhysRevLett.86.4435

    Article  ADS  Google Scholar 

  55. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995). https://doi.org/10.1103/PhysRevLett.75.4337

    Article  ADS  Google Scholar 

  56. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012). https://doi.org/10.1103/RevModPhys.84.777

    Article  ADS  Google Scholar 

  57. Hu, X.M., Zhang, C., Liu, B.H., Guo, Y., Xing, W.B., Huang, C.X., Huang, Y.F., Li, C.F., Guo, G.C.: High-dimensional bell test without detection loophole. Phys. Rev. Lett. 129, 060402 (2022). https://doi.org/10.1103/PhysRevLett.129.060402

    Article  ADS  Google Scholar 

  58. Tomm, N., Javadi, A., Antoniadis, N.O., Najer, D., Löbl, M.C., Korsch, A.R., Schott, R., Valentin, S.R., Wieck, A.D., Ludwig, A., Warburton, R.J.: A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021). https://doi.org/10.1038/s41565-020-00831-x

    Article  ADS  Google Scholar 

  59. Pan, J.W., Lu, C.Y.: Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 16, 1294–1296 (2021). https://doi.org/10.1038/s41565-021-01033-9

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant Nos. 12247214, 11674037), LiaoNing Revitalization Talents Program (Grant No. XLYC1807206), LiaoNing BaiQianWan Talents program (Grant No. 2021921096), Natural Science Foundation of LiaoNing Province (Grant Nos. 2021-MS-317, 2022-MS-372), Startup Foundation for Doctors of Liaoning Province (Grant No. 2020-BS-234) and Foundation of Liaoning Province Education Administration (Grant Nos. LJKZZ20220120, LJ2020005, LJKZ1015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Ming Xiu or Li Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZL., Xiu, XM., Lv, L. et al. Two schemes for generating four-photon cluster states based on quantum dot microcavity coupling systems. Quantum Inf Process 22, 121 (2023). https://doi.org/10.1007/s11128-023-03854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03854-0

Keywords

Navigation