Abstract
We present a general scheme for hierarchical controlled remote preparation of an arbitrary m-qudit state by using m four-qudit cluster states as the quantum channel. The sender first performs m-qudit positive operator-valued measurement in accordance with her knowledge of prepared state and then performs generalized X-basis measurements on her entangled particles. The upper-grade agent only needs perform unitary operation in accordance with one of the lower-grade agents’ measurement results for controlled remote preparation of an arbitrary m-qudit state. The lower-grade agent needs perform corresponding unitary operations in accordance with all the other agents’ measurement results. The protocol has the advantage of transmitting less entangled particles for hierarchical controlled remote preparation of an arbitrary m-qudit state via four-qudit cluster states.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-023-03855-z/MediaObjects/11128_2023_3855_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-023-03855-z/MediaObjects/11128_2023_3855_Fig2_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
The authors confirm that the data supporting the findings of this study are available within the article.
References
Bennett, C.H., Brassad, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. IEEE, New York, pp. 175–179. IEEE Press, New York (1984)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)
Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)
Zhang, Y.C., Chen, Z.Y., Pirandola, S., Wang, X.Y., Zhou, C., Chu, B.J., Zhao, Y.J., Xu, B.J., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125(1), 010502 (2020)
Cao, Y., Li, Y.H., Yang, K.X., Jiang, Y.F., Li, S.L., Hu, X.L., Abulizi, M., Li, C.L., Zhang, W.J., Sun, Q.C., Liu, W.Y., Jiang, X., Liao, S.K., Ren, J.G., Li, H., You, L.X., Wang, Z., Yin, J., Lu, C.Y., Wang, X.B., Zhang, Q., Peng, C.Z., Pan, J.W.: Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125(26), 260503 (2020)
Fang, X.T., Zeng, P., Liu, H., Zou, M., Wu, W., Tang, Y.L., Sheng, Y.J., Xiang, Y., Zhang, W.J., Li, H., Wang, Z., You, L.X., Li, M.J., Chen, H., Chen, Y.A., Zhang, Q., Peng, C.Z., Ma, X.F., Chen, T.Y., Pan, J.W.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14(7), 422 (2020)
Guo, P.L., Dong, C., He, Y., Jing, F., He, W.T., Ren, B.C., Li, C.Y., Deng, F.G.: Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons. Opt. Express 28, 4611 (2020)
Zhou, C., Wang, X., Zhang, Z., Yu, S., Chen, Z., Guo, H.: Rate compatible reconciliation for continuous-variable quantum key distribution using Raptor-like LDPC codes. Sci. China Phys. Mech. Astron. 64(6), 260311 (2021)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)
Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)
Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61(9), 090312 (2018)
Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, 26 (2019)
Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22 (2019)
Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12 (2020)
Yang, Y.G., Wang, Y.C., Yang, Y.L., Chen, X.B., Li, D., Zhou, Y.H., Shi, W.M.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. China Phys. Mech. Astron. 64(6), 260321 (2021)
Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)
Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267 (2021)
Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(6), 250311 (2022)
Ying, J.W., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B 31, 120303 (2022)
Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367 (2022)
Liu, X., Luo, D., Lin, G.S., Chen, Z.H., Huang, C.F., Li, S.Z., Zhang, C.X., Zhang, Z.R., Wei, K.J.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 12, 120311 (2022)
Shor, P.W.:Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124-134.(1994)
Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69(5), 052303 (2004)
Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)
Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)
Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91(3), 032328 (2015)
Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25(10), 10863–10873 (2017)
Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94(2), 022343 (2016)
Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-optical microcavities. Phys. Rev. A 94(6), 062310 (2016)
Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrodinger dynamics. Phys. Rev. A 93(5), 052324 (2016)
Reimer, C., Sciara, S., Roztocki, P., Islam, M., Corts, L.R., Zhang, Y.B., Fischer, B., Loranger, S., Kashyap, R., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Munro, W.J., Azana, J., Kues, M., Morandotti, R.: High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019)
Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)
Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)
Yuan, H., Zhang, G., Xie, C., Zhang, Z.: Improving the scheme of bidirectional controlled teleportation with a five-qubit composite GHZ-Bell state. Laser Phys. Lett. 19, 085204 (2022)
Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)
Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)
Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74, 032317 (2006)
Hu, S., Cui, W.X., Wang, D.Y., Bai, C.H., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)
Lin, J.Y., He, J.G., Gao, Y.C., Li, X.M., Zhou, P.: Bidirectional controlled remote implementation of an arbitrary single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 56, 1085–1095 (2017)
Ivanov, S.S., Vitanov, N.V.: High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses. Opt. Lett. 36, 1275–1277 (2011)
Xu, H., Song, X.K., Wang, D., Ye, L.: Quantum sensing of control errors in three-level systems by coherent control techniques. Sci. China-Phys. Mech. Astron (2022). https://doi.org/10.1007/s11433-022-2034-5
Hillery, M., Bu\(\check{z}\)ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)
Ju, X.X., Zhong, W., Sheng, Y.B., Zhou, L.: Measurement-device-independent quantum secret sharing with hyper-encoding. Chin. Phys. B 31, 100302 (2022)
Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)
Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)
Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)
Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)
Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)
Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)
Zhou, P., Jiao, X.F., Lv, S.X.: Parallel remote state preparation of arbitrary single-qubit states via linear- optical elements by using hyperentangled Bell states as the quantum channel. Quantum Inf. Process. 17, 298 (2018)
Nawaz, M., Islam, R., Ikram, M.: Remote state preparation through hyperentangled atomic states. J. Phys. B. 51, 075501 (2018)
Zha, X.W., Wang, M.R., Jiang, R.X.: Two forms schemes of deterministic remote state preparation for four-qubit cluster-type state. Int. J. Theor. Phys. 59(3), 960–973 (2020)
Chaudhary, M., Fadel, M., Ilo-Okeke, E.O., Pyrkov, A.N., Ivannikov, V., Byrnes, T.: Remote state preparation of two-component Bose-Einstein condensates. Phys. Rev. A 103(6), 062417 (2021)
Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)
Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)
Ra, Y.S., Lim, H.T., Kim, Y.H.: Remote preparation of three-photon entangled states via single-photon measurement. Phys. Rev. A 94, 042329 (2016)
Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40, 3719 (2007)
Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008)
Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381, 581 (2017)
Du, Z., Li, X.: Deterministic joint remote state preparation of four-qubit cluster type with tripartite involvement. Quantum Inf. Process. 19, 39 (2020)
Hou, K., Wang, J., Yuan, H., Shi, S.H.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)
Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)
Sun, S., Zhang, H.: Double-direction quantum cyclic controlled remote state preparation of two-qubit states. Quantum Inf. Process. 20, 211 (2021)
Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)
Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J.: Multiparty hierarchical quantum-information splitting. J. Phys. B 44, 035505 (2011)
Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)
Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)
Chen, N., Yan, B., Chen, G., Zhang, M.J., Pei, C.X.: Deterministic hierarchical joint remote state preparation with six-particle partially entangled state. Chin. Phys. B 27, 090304 (2018)
Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(\chi \) entangled state. Quantum Inf. Process. 17, 105 (2018)
Zha, X.W., Miao, N.: Hierarchical controlled quantum teleportation. Mod. Phys. Lett. B 33, 1950356 (2019)
Bich, C.T., An, N.B.: Hierarchically controlling quantum teleportations. Quantum Inf. Process. 18, 245 (2019)
Wang, N.N., Ma, S.Y., Li, X.: Hierarchical controlled quantum communication via the \(\chi \) state under noisy environment. Mod. Phys. Lett. A 35, 2050306 (2020)
Barik, S., Warke, A., Behera, B.K., Panigrahi, P., Deterministic, K., hierarchical remote state preparation of a two-qubit entangled state using Brown, et al.: State in a noisy environment. IET Quantum Commun. 2, 49–54 (2020)
Ma, S., Wang, N.: Hierarchical remote preparation of an arbitrary two-qubit state with multiparty. Quantum Inf. Process. 20, 276 (2021)
Tang, J., Ma, S.Y., Li, Q.: Probabilistic hierarchical quantum information splitting of arbitrary multi-qubit states. Entropy 24, 1077 (2022)
Kysela, J.: High-dimensional quantum Fourier transform of twisted light. Phys. Rev. A 104, 012413 (2021)
Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)
Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)
Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Hierarchical controlled remote state preparation by using a four-qubit cluster state. Int. J. Theor. Phys. 57, 1748 (2018)
Lu, X.Q., Feng, K.F., Li, X.W., Zhou, P.: Deterministic remote preparation of an arbitrary single-qudit state with high-dimensional spatial-mode entanglement via linear-optical elements. Int. J. Theor. Phys. 61, 36 (2022)
Li, X.H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90, 052305 (2014)
Duan, W.X., Wang, T.J.: Control power of high-dimensional controlled dense coding. Phys. Rev. A 105, 052417 (2022)
Acknowledgements
This work was supported by the Natural Science Foundation of Guangxi under Grant No. 2018JJA110112 and National Natural Science Foundation of China under Grant Nos. 11564004 and 61501129.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jin, RH., Wei, WS. & Zhou, P. Hierarchical controlled remote preparation of an arbitrary m-qudit state with four-qudit cluster states. Quantum Inf Process 22, 113 (2023). https://doi.org/10.1007/s11128-023-03855-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-03855-z