Skip to main content
Log in

Genuine multipartite coherence under correlated noisy channels in N-partite systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we define the genuine multipartite coherence and genuine multipartite average coherence, discuss their properties and investigative the relationship between them and other quantum resources. Firstly, we prove that the genuine multipartite coherence can be represented by interaction information, and it can determine whether genuine multipartite discord exists. Secondly, comparing the global coherence and genuine multipartite coherence in noisy channels with different correlation strengths, the global coherence and genuine multipartite coherence are more stable with the increasing correlation strengths, and genuine multipartite coherence is more stable than global coherence. Finally, we find that the difference between genuine multipartite coherence and genuine multipartite average coherence can be expressed by quantum discord, and the genuine multipartite coherence is always greater than or equal to the genuine multipartite entanglement. For the tripartite pure states, we provide some trade-off relations between the total correlation, classical correlation, and quantum correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. Su, Y.-L., Liu, S.-Y., Wang, X.-H., Fan, H., Yang, W.-L.: Coherence as resource in scattering quantum walk search on complete graph. Scient. Rep. 8(1), 1–13 (2018)

    ADS  Google Scholar 

  2. Rastegin, A.E.: On the role of dealing with quantum coherence in amplitude amplification. Quant. Inf. Process. 17(7), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Giorda, P., Allegra, M.: Coherence in quantum estimation. J. Phys. A: Math. Theoret. 51(2), 025302 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Wang, Z., Wu, W., Cui, G., Wang, J.: Coherence enhanced quantum metrology in a nonequilibrium optical molecule. New J. Phys. 20(3), 033034 (2018)

    ADS  Google Scholar 

  5. Ptaszy ński, K., Esposito, M.: Thermodynamics of quantum information flows. Phys. Rev. Lett. 122, 150603 (2019)

  6. Shi, Y.-H., Shi, H.-L., Wang, X.-H., Hu, M.-L., Liu, S.-Y., Yang, W.-L., Fan, H.: Quantum coherence in a quantum heat engine. J. Phys. A: Math. Theoret. 53(8), 085301 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  8. Bu, K., Singh, U., Fei, S.-M., Pati, A.K., Wu, J.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

    ADS  MathSciNet  Google Scholar 

  9. Kim, S., Xiong, C., Kumar, A., Zhang, G., Wu, J.: Quantifying dynamical coherence with coherence measures. Phys. Rev. A 104, 012404 (2021)

    ADS  MathSciNet  Google Scholar 

  10. Fang, K., Wang, X., Lami, L., Regula, B., Adesso, G.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121, 070404 (2018)

    ADS  MathSciNet  Google Scholar 

  11. Wang, B.-H., Zhou, S.-Q., Ma, Z., Fei, S.-M.: Tomographic witnessing and holographic quantifying of coherence. Quant. Inf. Process. 20(5), 1–16 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    ADS  MathSciNet  Google Scholar 

  13. Tan, K.C., Jeong, H.: Entanglement as the symmetric portion of correlated coherence. Phys. Rev. Lett. 121, 220401 (2018)

    ADS  Google Scholar 

  14. Liu, S.-Y., Wu, F.-L., Zhang, Y.-Z., Fan, H.: Strong superadditive deficit of coherence and quantum correlations distribution. Chinese Phys. Lett. 36(8), 080303 (2019)

    ADS  Google Scholar 

  15. Xia, W., Hou, J.-X., Wang, X.-H., Liu, S.-Y.: The sudden death and sudden birth of quantum discord. Scient. Rep. 8(1), 1–10 (2018)

    ADS  Google Scholar 

  16. Hou, J.-X., Su, Y.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L.: Geometric structure of quantum resources for bell-diagonal states. Quant. Inf. Process. 17(7), 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    ADS  Google Scholar 

  18. Ma, T., Zhao, M.-J., Zhang, H.-J., Fei, S.-M., Long, G.-L.: Accessible coherence and coherence distribution. Phys. Rev. A 95, 042328 (2017)

    ADS  Google Scholar 

  19. Jin, Z.-X., Li-Jost, X., Fei, S.-M., Qiao, C.-F.: Quantum coherence bounds the distributed discords. NPJ Quant. Inf. 8(1), 1–6 (2022)

    Google Scholar 

  20. Tan, K.C., Kwon, H., Park, C.-Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016)

    ADS  Google Scholar 

  21. Basso, M.L.W., Maziero, J.: Monogamy and trade-off relations for correlated quantum coherence. Physica Scripta 95(9), 095105 (2020)

    ADS  Google Scholar 

  22. Xie, S., Eberly, J.H.: Triangle measure of tripartite entanglement. Phys. Rev. Lett. 127, 040403 (2021)

    ADS  MathSciNet  Google Scholar 

  23. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    ADS  Google Scholar 

  24. Hu, M.-L., Wang, X.-M., Fan, H.: Hierarchy of the nonlocal advantage of quantum coherence and bell nonlocality. Phys. Rev. A 98, 032317 (2018)

    ADS  Google Scholar 

  25. Styliaris, G., Campos Venuti, L., Zanardi, P.: Coherence-generating power of quantum dephasing processes. Phys. Rev. A 97, 032304 (2018)

    ADS  Google Scholar 

  26. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    ADS  Google Scholar 

  27. Zhang, A., Zhang, K., Zhou, L., Zhang, W.: Frozen condition of quantum coherence for atoms on a stationary trajectory. Phys. Rev. Lett. 121, 073602 (2018)

    ADS  Google Scholar 

  28. Hu, M.-L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China Phys., Mech. Astron. 63, 230322 (2020)

    ADS  Google Scholar 

  29. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. General 34(35), 6899 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., Zou, X.-B., Guo, G.-C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1(1), 1–6 (2010)

    ADS  Google Scholar 

  31. Leydesdorff, L.: Configurational information as potentially negative entropy: the triple helix model. Entropy 10(4), 391–410 (2008)

    ADS  Google Scholar 

  32. Liu, S.-Y., Zhang, Y.-R., Zhao, L.-M., Yang, W.-L., Fan, H.: General monogamy property of global quantum discord and the application. Ann. Phys. 348, 256–269 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  33. McGill, W.J.: Multivariate information transmission. Psychometrika 19, 97–116 (1954)

    MATH  Google Scholar 

  34. Jakulin, A., Bratko, I.: Quantifying and visualizing attribute interactions (2003). https://doi.org/10.48550/arXiv.cs/0308002

  35. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Scientif. Rep. 5(1), 1–9 (2015)

    Google Scholar 

  36. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203–1259 (2014)

    ADS  Google Scholar 

  37. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    ADS  Google Scholar 

  38. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  39. Ou, Y.-C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    ADS  MathSciNet  Google Scholar 

  40. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    ADS  MATH  Google Scholar 

  41. Li, M., Fei, S.-M.: Measurable bounds for entanglement of formation. Phys. Rev. A 82, 044303 (2010)

    ADS  Google Scholar 

  42. Bai, Y.-K., Zhang, N., Ye, M.-Y., Wang, Z.D.: Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013)

    ADS  Google Scholar 

  43. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    ADS  MathSciNet  Google Scholar 

  44. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 12175179 and the Peng Huaiwu Center for Fundamental Theory under Grant No. 12047502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Yuan Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DH., Wu, FL., Peng, ZY. et al. Genuine multipartite coherence under correlated noisy channels in N-partite systems. Quantum Inf Process 22, 120 (2023). https://doi.org/10.1007/s11128-023-03860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03860-2

Keywords

Navigation