Skip to main content
Log in

Quantum entanglement versus skew information correlations in dipole–dipole system under KSEA and DM interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this manuscript, we explore the characteristics of thermal entanglement and skew information correlations in a dipolar coupled-spins system subjected to the combined effect of Kaplan–Shekhtman–Entin–Wohlman–Aharony (KSEA) and Dzyaloshinsky–Moriya (DM) interactions in the presence of an external homogenous magnetic field. We employ logarithmic negativity (LN) to characterize the degree of entanglement. Under the thermal reservoir effect, uncertainty-induced non-locality (UIN) and local quantum uncertainty (LQU) are both utilized to evaluate skew information correlations in the investigated system. The variations of the logarithmic negativity and skew information quantifiers are studied in terms of the equilibrium temperature, the dipolar coupling strengths among the two linked spins, DM and KSEA coupling parameters, and the intensity of the homogeneous magnetic field. The findings reveal that the non-classical correlations seen between two linked spins may be adjusted by changing the dipolar interaction coupling strengths between the coupled spins, the intensity of KSEA interaction and the strength of the homogeneous magnetic field B. In addition, our findings demonstrate that the skew information correlations tolerate thermal noise better than entanglement and that LQU and UIN quantifiers disclose more non-classical correlations beyond the LN in the dipole–dipole two-spin system. Our findings also confirm that the UIN is more resistant than the LQU against rising temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. arXiv:2003.06557 (2020)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  MATH  Google Scholar 

  7. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Phys. Today 54(2), 60 (2000)

    MATH  Google Scholar 

  8. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    ADS  Google Scholar 

  9. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. London. A Math. Phys. Sci. 400, 97–117 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Mansour, M., Dahbi, Z.: Quantum secret sharing protocol using maximally entangled multi-qudit states. Int. J. Theo. Phys. 59, 3876–3887 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Bennett, Charles H., et al.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    ADS  Google Scholar 

  12. Vallone, G., Marangon, D.G., Tomasin, M., Villoresi, P.: Quantum randomness certified by the uncertainty principle. Phy. Rev. A 90, 052327 (2014)

    ADS  Google Scholar 

  13. Mansour, M., Dahbi, Z.: Entanglement of bipartite partly non-orthogonal-spin coherent states. Laser Phys. 30, 085201 (2020)

    ADS  Google Scholar 

  14. Abdel-Aty, A.H., Khedr, A.N., Saddeek, Y.B., Youssef, A.A.: Thermal entanglement in quantum annealing processor. Int. J. Quant. Inf. 16, 1850006 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Mansour, M., Daoud, M., Dahbi, Z.: Randomized entangled mixed states from phase states. Int. J. Theo. Phys. 59, 895–907 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Mansour, M., Dahbi, Z., Essakhi, M., Salah, A.: Quantum correlations through spin coherent states. Int. J. Theo. Phys. 60, 2156–2174 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  19. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    ADS  MathSciNet  Google Scholar 

  20. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Horodecki, M., Horodecki, P., Horodecki, R.: On the necessary and sufficient conditions for separability of mixed quantum states. arXiv preprint arXiv:quant-ph/9605038 (1996)

  22. Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)

    ADS  Google Scholar 

  23. Mansour, M., Oulouda, Y., Sbiri, A., El Falaki, M.: Decay of negativity of randomized multi-qubit mixed states. Laser Phys. 31, 035201 (2021)

    ADS  Google Scholar 

  24. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  MATH  Google Scholar 

  25. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Luo, S.: Quantum discord for two-qubit systems. Phys-ical Review A 77(4), 042303 (2008)

    ADS  Google Scholar 

  27. Dakić, B., Vedral, V., Brukner, Č: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    ADS  MATH  Google Scholar 

  28. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)

    ADS  Google Scholar 

  30. Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    ADS  MATH  Google Scholar 

  31. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. 49, 910–918 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    ADS  Google Scholar 

  33. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    ADS  Google Scholar 

  34. Sbiri, A., Mansour, M., Oulouda, Y.: Local quantum uncertainty versus negativity through Gisin states. Int. J. Quantum Inf. 19, 05 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Essakhi, M., Khedif, Y., Mansour, M., et al.: Non-classical correlations in multipartite generalized coherent states. Braz. J. Phys. 52, 124 (2022)

    ADS  Google Scholar 

  36. Sbiri, A., Oumennana, M., Mansour, M.: Thermal quantum correlations in a two-qubit Heisenberg model under Calogero–Moser and Dzyaloshinsky–Moriya interactions. Mod. Phys. Lett. B 36, 2150618 (2022)

    ADS  MathSciNet  Google Scholar 

  37. Yang, C., Guo, Y.N., Peng, H.P., Lu, Y.B.: Dynamics of local quantum uncertainty for a two-qubit system under dephasing noise. Laser Phys. 30, 015203 (2019)

    ADS  Google Scholar 

  38. Khedr, A.N., Homid, A.H., Mohamed, A.B.A., Abdel-Aty, A.H., Eleuch, H., Tammam, M., Abdel-Aty, M.: Robust thermal correlations induced by spin-orbit interactions. Results Phys. 38, 105619 (2022)

    Google Scholar 

  39. Elghaayda, S., Dahbi, Z., Mansour, M.: Local quantum uncertainty and local quantum Fisher information in two-coupled double quantum dots. Opt. Quantum Electron. 54, 419 (2022)

    Google Scholar 

  40. Dahbi, Z., Ur, Rahman A., Mansour, M.: Skew information correlations and local quantum Fisher information in two gravitational cat states. Physica A 609, 128333 (2023)

    MathSciNet  MATH  Google Scholar 

  41. Wu, S.X., Zhang, J., Yu, C.S., Song, H.S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344–347 (2014)

    ADS  MATH  Google Scholar 

  42. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    ADS  MATH  Google Scholar 

  43. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    ADS  MATH  Google Scholar 

  44. Kuznetsova, E.I., Yurischev, M.A.: Quantum discord in spin systems with dipole-dipole interaction. Quantum Inf. Process. 12, 3587–3605 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state. Quantum Inf. Process. 11, 1603–1617 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Hu, Z.D., Wang, J., Zhang, Y., Zhang, Y.Q.: Sudden transitions of trace distance discord of dipole-dipole coupled two qubits. Int. J. Mod. Phys. B 29, 1550138 (2015)

    ADS  MATH  Google Scholar 

  47. Peter, D., Müller, S., Wessel, S., Büchler, H.P.: Anomalous behavior of spin systems with dipolar interactions. Phys. Rev. Lett. 109, 025303 (2012)

    ADS  Google Scholar 

  48. Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Clare, C.Y.: Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005)

    ADS  Google Scholar 

  49. Zhou, Y.L., Ou, B.Q., Wu, W.: Quantum simulating the frustrated Heisenberg model in a molecular dipolar crystal. Phys. Lett. A 379, 2569–2576 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Rabl, P., Zoller, P.: Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing. Phys. Rev. A 76, 042308 (2007)

    ADS  Google Scholar 

  51. Büchler, H.P., Micheli, A., Zoller, P.: Three-body interactions with cold polar molecules. Nat. Phys. 3, 726–731 (2007)

    Google Scholar 

  52. Rajapakse, R.M., Bragdon, T., Rey, A.M., Calarco, T., Yelin, S.F.: Single-photon nonlinearities using arrays of cold polar molecules. Phys. Rev. A 80, 013810 (2009)

    ADS  Google Scholar 

  53. Carr, L.D., DeMille, D., Krems, R.V., Ye, J.: Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009)

    ADS  Google Scholar 

  54. Gorshkov, A.V., Manmana, S.R., Chen, G., Ye, J., Demler, E., Lukin, M.D., Rey, A.M.: Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011)

    ADS  Google Scholar 

  55. Mohammed, A.R., Ahmed, A.H., El-Shahat, T.M., Metwally, N.: Quantum steering over an entangled network that is generated via Dipolar interaction. Phys. A: Stat. Mech. Appl. 584, 126380 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Dzyaloshinsky, I.: A thermodynamic theory of “weak’’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    ADS  Google Scholar 

  57. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    ADS  Google Scholar 

  58. Khedr, A.N., Mohamed, A.B.A., Abdel-Aty, A.H., Tammam, M., Abdel-Aty, M., Eleuch, H.: Entropic uncertainty for two coupled dipole spins using quantum memory under the Dzyaloshinskii–Moriya interaction. Entropy 23, 1595 (2021)

    ADS  MathSciNet  Google Scholar 

  59. Kaplan, T.A.: Single-band Hubbard model with spin-orbit coupling. Z. Phys. B Cond. Mat. 49, 313–317 (1983)

    ADS  Google Scholar 

  60. Shekhtman, L., Entin-Wohlman, O., Aharony, A.: Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69, 836 (1992)

    ADS  Google Scholar 

  61. Shekhtman, L., Aharony, A., Entin-Wohlman, O.: Bond-dependent symmetric and antisymmetric superexchange interactions in La\(_2\)CuO\(_4\). Phys. Rev. B 47, 174 (1993)

    ADS  Google Scholar 

  62. Zheludev, A., Maslov, S., Zaliznyak, I., Regnault, L. P., Masuda, T., Uchinokura, K., Shirane, G.: Experimental evidence for Shekhtman–Entin–Wohlman–Aharony (SEA) interactions in Ba\(_2\)CuGe\(_2\)O\(_7\). arXiv preprint arXiv:cond-mat/9805236 (1998)

  63. Yildirim, T., Harris, A.B., Aharony, A., Entin-Wohlman, O.: Anisotropic spin Hamiltonians due to spin-orbit and Coulomb exchange interactions. Phys. Rev. B 52, 10239 (1995)

    ADS  Google Scholar 

  64. Mohamed, A.B.A., Khedr, A.N., Haddadi, S., Rahman, A.U., Tammam, M., Pourkarimi, M.R.: Intrinsic decoherence effects on nonclassical correlations in a symmetric spin-orbit model. Results Phys. 39, 105693 (2022)

    Google Scholar 

  65. Tsukada, I., Sun, X.F., Komiya, S., Lavrov, A.N., Ando, Y.: Significant suppression of weak ferromagnetism in (La\(_1.8\)Eu\(_0.2\))CuO\(_4\). Phys. Rev. B 67, 224401 (2003)

    ADS  Google Scholar 

  66. Lumsden, M.D., Sales, B.C., Mandrus, D., Nagler, S.E., Thompson, J.R.: Weak ferromagnetism and field-induced spin reorientation in K\(_2\)V\(_3\)O\(_8\). Phys. Rev. Lett. 86, 159 (2001)

  67. Zheludev, A., Maslov, S., Shirane, G., Tsukada, I., Masuda, T., Uchinokura, K., Zaliznyak, I., Erwin, R., Regnault, L.P.: Magnetic anisotropy and low-energy spin waves in the Dzyaloshinskii–Moriya spiral magnet Ba\(_2\)CuGe\(_2\)O\(_7\) Phys. Rev. B 59, 11432 (1999)

    Google Scholar 

  68. Mühlbauer, S., Brandl, G., Månsson, M., Garst, M.: Formation of incommensurate long-range magnetic order in the Dzyaloshinskii–Moriya antiferromagnet Ba\(_2\)CuGe\(_2\)O\(_7\) studied by neutron diffraction. Phys. Rev. B 96, 134409 (2017)

    ADS  Google Scholar 

  69. Emori, S., Bauer, U., Ahn, S.M., Martinez, E., Beach, G.S.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013)

    ADS  Google Scholar 

  70. Yu, X.Z., Kanazawa, N., Zhang, W.Z., Nagai, T., Hara, T., Kimoto, K., Tokura, Y.: Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 1–6 (2012)

    Google Scholar 

  71. Liu, B.Q., Shao, B., Li, J.G., Zou, J., Wu, L.A.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii–Moriya interaction. Phys. Rev. A 83, 052112 (2011)

    ADS  Google Scholar 

  72. Yurischev, M.A.: On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions. Quantum Inf. Process. 19, 1–20 (2020)

    MathSciNet  MATH  Google Scholar 

  73. Oumennana, M., Rahman, A.U., Mansour, M.: Quantum coherence versus non-classical correlations in XXZ spin-chain under Dzyaloshinsky–Moriya (DM) and KSEA interactions. App. Phys. B 128, 1–13 (2022)

    Google Scholar 

  74. Oumennana, M., Dahbi, Z., Mansour, M., Khedif, Y.: Geometric measures of quantum correlations in a two-qubit Heisenberg XXZ model under multiple interactions effects. J. Russ. Laser Res. 43, 533–545 (2022)

    Google Scholar 

  75. Hashem, M., Mohamed, A.B.A., Haddadi, S., et al.: Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Appl. Phys. B 128, 87 (2022)

    ADS  Google Scholar 

  76. Khedif, Y., Haddadi, S., Pourkarimi, M.R., Daoud, M.: Thermal correlations and entropic uncertainty in a two-spin system under DM and KSEA interactions. Mod. Phys. Lett. A 36, 2150209 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Fedorova, A.V., Yurischev, M.A.: Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions. Quantum Inf. Process. 21, 92 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  78. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283, 1–7 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Reis, M.S.: Foundations of Magnetism. Elsevier, New York (2013)

    Google Scholar 

  80. Li, D.C., Cao, Z.L.: Entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii–Moriya interaction and inhomogeneous magnetic field. Eur. Phys. J. D 50, 207–214 (2008)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Mansour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elghaayda, S., Khedr, A.N., Tammam, M. et al. Quantum entanglement versus skew information correlations in dipole–dipole system under KSEA and DM interactions. Quantum Inf Process 22, 117 (2023). https://doi.org/10.1007/s11128-023-03866-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03866-w

Keywords

Navigation