Skip to main content
Log in

Optimization of tripartite quantum steering inequalities via machine learning

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the possibility of optimizing genuine tripartite quantum steering inequalities via machine learning. In particular, we consider two types of hybrid scenarios: one-sided device-independent scenario (where one party is considered to be untrusted) and two-sided device-independent scenario (where two parties are considered to be untrusted). In both scenarios, we apply a method of machine learning, known as artificial neuron networks, to optimize the quantum steering inequalities for the family of noisy Greenberger–Horne–Zeilinger states and noisy W states. The results show that the optimized steering classifiers can verify quantum steering well with only a small number of Pauli measurements, which can be easily realized in experiment. The method can be generalized to other multipartite or high-dimensional quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can it quantum mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Philos. Soc. 32(3), 446 (1936)

    Article  ADS  MATH  Google Scholar 

  3. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76(5), 052116 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bowles, J., Vértesi, T., Quintino, M.T., Brunner, N.: One-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112(20), 200402 (2014)

    Article  ADS  Google Scholar 

  5. Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photonics 6, 596 (2012)

    Article  ADS  Google Scholar 

  6. Wollmann, S., Walk, N., Bennet, A.J., Wiseman, H.M., Pryde, G.J.: Observation of genuine one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 116(16), 160403 (2016)

    Article  ADS  Google Scholar 

  7. Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114(6), 060404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sun, K., Ye, X.J., Xiao, Y., Xu, X.Y., Wu, Y.C., Xu, J.S., Chen, J.L., Li, C.F., Guo, G.C.: Demonstration of Einstein CPodolsky CRosen steering with enhanced subchannel discrimination. NPJ Quantum Inf. 4, 12 (2018)

    Article  ADS  Google Scholar 

  9. Reid, M.D.: Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities. Phys. Rev. A 88(6), 062338 (2013)

    Article  ADS  Google Scholar 

  10. He, Q., Rosales-Zárate, L., Adesso, G., Reid, M.D.: Secure continuous variable teleportation and Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 115(18), 180502 (2015)

    Article  ADS  Google Scholar 

  11. Walk, N., Hosseini, S., Geng, J., Thearle, O., Haw, J.Y., Armstrong, S., Assad, S.M., Janousek, J., Ralph, T.C., Symul, T., Wiseman, H.M., Lam, P.K.: Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica 3(6), 634 (2016)

    Article  ADS  Google Scholar 

  12. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)

    Article  ADS  Google Scholar 

  13. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85(1), 010301(R) (2012)

    Article  ADS  Google Scholar 

  14. Jebaratnam, C.: Detecting genuine multipartite entanglement in steering scenarios. Phys. Rev. A 93(5), 052311 (2016)

    Article  ADS  Google Scholar 

  15. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80(3), 032112 (2009)

    Article  ADS  Google Scholar 

  16. Zheng, Y.L., Zhen, Y.Z., Chen, Z.B., Liu, N.L., Chen, K., Pan, J.W.: Efficient linear criterion for witnessing Einstein–Podolsky–Rosen nonlocality under many-setting local measurements. Phys. Rev. A 95(1), 012142 (2017)

    Article  ADS  Google Scholar 

  17. Zheng, Y.L., Zhen, Y.Z., Cao, W.F., Li, L., Chen, Z.B., Liu, N.L., Chen, K.: Optimized detection of steering via linear criteria for arbitrary-dimensional states. Phys. Rev. A 95(3), 032128 (2017)

    Article  ADS  Google Scholar 

  18. Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Einstein–Podolsky–Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87(6), 062103 (2013)

    Article  ADS  Google Scholar 

  19. Zhen, Y.Z., Zheng, Y.L., Cao, W.F., Li, L., Chen, Z.B., Liu, N.L., Chen, K.: Certifying Einstein–Podolsky–Rosen steering via the local uncertainty principle. Phys. Rev. A 93(1), 012108 (2016)

    Article  ADS  Google Scholar 

  20. Ji, S.W., Lee, J., Park, J., Nha, H.: Steering criteria via covariance matrices of local observables in arbitrary-dimensional quantum systems. Phys. Rev. A 92(6), 062130 (2015)

    Article  ADS  Google Scholar 

  21. Cavalcanti, D., Skrzypczyk, P., Aguilar, G.H., Nery, R.V., Ribeiro, P.S., Walborn, S.P.: Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat. Commun. 6, 7941 (2015)

    Article  ADS  Google Scholar 

  22. Wiebe, N., Granade, C., Ferrie, C., Cory, D.G.: Hamiltonian learning and certification using quantum resources. Phys. Rev. Lett. 112(19), 190501 (2014)

    Article  ADS  Google Scholar 

  23. Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., Zeilinger, A.: Automated search for new quantum experiments. Phys. Rev. Lett. 116(9), 090405 (2016)

    Article  ADS  Google Scholar 

  24. van Nieuwenburg, E.P.L., Liu, Y.-H., Huber, S.D.: Learning phase transitions by confusion. Nat. Phys. 13, 435 (2017)

    Article  Google Scholar 

  25. Deng, D.L.: Machine learning detection of bell nonlocality in quantum many-body systems. Phys. Rev. Lett. 120(24), 240402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ma, Y.C., Yung, M.H.: Transforming Bell’s inequalities into state classifiers with machine learning. NPJ Quantum Inf. 4, 34 (2018)

    Article  ADS  Google Scholar 

  27. Yang, M., Ren, C.L., Ma, Y.C., Xiao, Y., Ye, X.J., Song, L.L., Xu, J.S., Yung, M.H., Li, C.F., Guo, G.C.: Experimental simultaneous learning of multiple nonclassical correlations. Phys. Rev. Lett. 123(19), 190401 (2019)

    Article  ADS  Google Scholar 

  28. Canabarro, A., Brito, S., Chaves, R.: Machine learning nonlocal correlations. Phys. Rev. Lett. 122(20), 200401 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Anhui Province under Grant Nos. 2008085MA16 and 2008085MA20, the University Synergy Innovation Program of Anhui Province under Grant Nos. GXXT-2022-039 and GXXT-2021-026, the Excellent Talents Support Program of Anhui Province under Grant No. gxyq2021208, the Natural Science Research Key Project of Education Department of Anhui Province under Grant Nos. 2022AH051681, KJ2020A0760 and KJ2021A0943, the Research Foundation for Advanced Talents of West Anhui University under Grant Nos. WGKQ202001004 and WGKQ2021004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, GZ., Yang, M., Zhou, J. et al. Optimization of tripartite quantum steering inequalities via machine learning. Quantum Inf Process 22, 162 (2023). https://doi.org/10.1007/s11128-023-03873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03873-x

Keywords

Navigation