Skip to main content
Log in

Genuine magnon–photon–magnon tripartite entanglement in a cavity electromagnonical system based on squeezed-reservoir engineering

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Here we investigate the genuine tripartite entanglement among one photon and two magnons in a cavity electromagnonical system, where two yttrium iron garnet (YIG) spheres are placed in a microwave cavity damped by a squeezed reservoir. In the presence of squeezing, the steady-state bipartite entanglements between photon and magnon and between two magnons are simultaneously existent, and the entanglement degrees are controllable with the different parameters. Moreover, the magnon–photon–magnon tripartite entanglement can be achieved and such a system is in a genuinely tripartite entangled state. The responsible mechanism is that the quantum correlation of squeezed light with the cavity is transferred to cavity mode and two magnon modes via the interaction between one cavity mode and two magnon modes. Our scheme provides an alternative way to manipulate the controllable and robust multipartite entanglement in hybrid quantum systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data.

References

  1. Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K., Nakamura, Y.: Hybrid quantum systems based on magnonics. Appl. Phys. Express 12(7), 070101 (2019)

    ADS  Google Scholar 

  2. Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113(8), 083603 (2014)

    ADS  Google Scholar 

  3. Soykal, Ö.O., Flatté, M.: Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104(7), 077202 (2010)

    ADS  Google Scholar 

  4. Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113(15), 156401 (2014)

    ADS  Google Scholar 

  5. Kostylev, N., Goryachev, M., Tobar, M.E.: Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. Appl. Phys. Lett. 108(6), 062402 (2016)

    ADS  Google Scholar 

  6. Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2(3), 1501286 (2016)

    ADS  Google Scholar 

  7. Li, J., Zhu, S.-Y., Agarwal, G.: Magnon–photon–phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121(20), 203601 (2018)

    ADS  Google Scholar 

  8. Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349(6246), 405–408 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Lachance-Quirion, D., Wolski, S.P., Tabuchi, Y., Kono, S., Usami, K., Nakamura, Y.: Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367(6476), 425–428 (2020)

    ADS  Google Scholar 

  10. Wang, Y.-P., Zhang, G.-Q., Zhang, D., Li, T.-F., Hu, C.-M., You, J.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120(5), 057202 (2018)

    ADS  Google Scholar 

  11. Li, J., Zhu, S.-Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 21(8), 085001 (2019)

    ADS  Google Scholar 

  12. Zhang, Z., Scully, M.O., Agarwal, G.S.: Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Phys. Rev. Res. 1(2), 023021 (2019)

    Google Scholar 

  13. Zheng, S.-S., Sun, F.-X., Yuan, H.-Y., Ficek, Z., Gong, Q.-H., He, Q.-Y.: Enhanced entanglement and asymmetric EPR steering between magnons. Sci. China Phys. Mech. Astron. 64(1), 1–9 (2021)

    ADS  Google Scholar 

  14. Yuan, H., Zheng, S., Ficek, Z., He, Q., Yung, M.-H.: Enhancement of magnon–magnon entanglement inside a cavity. Phys. Rev. B 101(1), 014419 (2020)

    ADS  Google Scholar 

  15. Wang, Y.-P., Rao, J., Yang, Y., Xu, P.-C., Gui, Y., Yao, B., You, J., Hu, C.-M.: Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123(12), 127202 (2019)

    ADS  Google Scholar 

  16. Sun, F.-X., Zheng, S.-S., Xiao, Y., Gong, Q., He, Q., Xia, K.: Remote generation of magnon Schrödinger cat state via magnon–photon entanglement. Phys. Rev. Lett. 127(8), 087203 (2021)

    ADS  Google Scholar 

  17. Liu, Z.-X., Xiong, H., Wu, Y.: Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Phys. Rev. B 100(13), 134421 (2019)

    ADS  Google Scholar 

  18. Xie, J., Ma, S.-L., Li, F.-L.: Quantum-interference-enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A 101(4), 042331 (2020)

    ADS  Google Scholar 

  19. Zhao, C., Li, X., Chao, S., Peng, R., Li, C., Zhou, L.: Simultaneous blockade of a photon, phonon, and magnon induced by a two-level atom. Phys. Rev. A 101(6), 063838 (2020)

    ADS  Google Scholar 

  20. Luo, Y.-H., Zhong, H.-S., Erhard, M., Wang, X.-L., Peng, L.-C., Krenn, M., Jiang, X., Li, L., Liu, N.-L., Lu, C.-Y.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123(7), 070505 (2019)

    ADS  Google Scholar 

  21. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729 (2000)

    ADS  Google Scholar 

  22. Bruß, D., D’Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen, A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93(21), 210501 (2004)

    ADS  MATH  Google Scholar 

  23. Demkowicz-Dobrzański, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801 (2014)

    ADS  Google Scholar 

  24. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80(2), 517 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Van Loock, P., Braunstein, S.L.: Telecloning of continuous quantum variables. Phys. Rev. Lett. 87(24), 247901 (2001)

    ADS  MathSciNet  Google Scholar 

  26. Aoki, T., Takei, N., Yonezawa, H., Wakui, K., Hiraoka, T., Furusawa, A., van Loock, P.: Experimental creation of a fully inseparable tripartite continuous-variable state. Phys. Rev. Lett. 91(8), 080404 (2003)

    ADS  Google Scholar 

  27. Armstrong, S., Wang, M., Teh, R.Y., Gong, Q., He, Q., Janousek, J., Bachor, H.-A., Reid, M.D., Lam, P.K.: Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks. Nat. Phys. 11(2), 167–172 (2015)

    Google Scholar 

  28. Yang, Z.-B., Liu, J.-S., Jin, H., Zhu, Q.-H., Zhu, A.-D., Liu, H.-Y., Ming, Y., Yang, R.-C.: Entanglement enhanced by Kerr nonlinearity in a cavity-optomagnonics system. Opt. Express 28(21), 31862–31871 (2020)

    ADS  Google Scholar 

  29. Ying, Z., Shuang-Yuan, X., Jing-Ping, X.: Bipartite and tripartite entanglement caused by squeezed drive in magnetic-cavity quantum electrodynamics system. Acta Phys. Sin. 69(22), 220301 (2020)

  30. Zhou, Y., Xie, S., Zhu, C., Yang, Y.: Nonlinear pumping induced multipartite entanglement in a hybrid magnon cavity QED system. Phys. Rev. B 106(22), 224404 (2022)

    ADS  Google Scholar 

  31. Zhong, W., Zhao, D., Cheng, G., Chen, A.: One-way Einstein–Podolsky–Rosen steering of macroscopic magnons with squeezed light. Opt. Commun. 497, 127138 (2021)

    Google Scholar 

  32. Kiesewetter, S., Teh, R., Drummond, P., Reid, M.: Pulsed entanglement of two optomechanical oscillators and furryąŕ hypothesis. Phys. Rev. Lett. 119(2), 023601 (2017)

    ADS  Google Scholar 

  33. Kimchi-Schwartz, M., Martin, L., Flurin, E., Aron, C., Kulkarni, M., Tureci, H., Siddiqi, I.: Stabilizing entanglement via symmetry-selective bath engineering in superconducting qubits. Phys. Rev. Lett. 116(24), 240503 (2016)

    ADS  Google Scholar 

  34. Cao, W., Lu, X., Meng, X., Sun, J., Shen, H., Xiao, Y.: Reservoir-mediated quantum correlations in non-Hermitian optical system. Phys. Rev. Lett. 124(3), 030401 (2020)

    ADS  Google Scholar 

  35. Qin, W., Miranowicz, A., Li, P.-B., Lü, X.-Y., You, J.-Q., Nori, F.: Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett. 120(9), 093601 (2018)

    ADS  Google Scholar 

  36. Nair, J.M., Agarwal, G.: Deterministic quantum entanglement between macroscopic ferrite samples. Appl. Phys. Lett. 117(8), 084001 (2020)

    ADS  Google Scholar 

  37. Yang, Z.-B., Liu, X.-D., Yin, X.-Y., Ming, Y., Liu, H.-Y., Yang, R.-C.: Controlling stationary one-way quantum steering in cavity magnonics. Phys. Rev. Appl. 15(2), 024042 (2021)

    ADS  Google Scholar 

  38. Yu, M., Zhu, S.-Y., Li, J.: Macroscopic entanglement of two magnon modes via quantum correlated microwave fields. J. Phys. B At. Mol. Opt. Phys. 53(6), 065402 (2020)

    ADS  Google Scholar 

  39. Gardiner, C.: Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing. Phys. Rev. Lett. 56(18), 1917 (1986)

    ADS  Google Scholar 

  40. DeJesus, E.X., Kaufman, C.: Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35(12), 5288 (1987)

    ADS  MathSciNet  Google Scholar 

  41. Vitali, D., Gigan, S., Ferreira, A., Böhm, H., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007)

    ADS  Google Scholar 

  42. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    ADS  Google Scholar 

  43. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95(9), 090503 (2005)

    ADS  MathSciNet  Google Scholar 

  44. Adesso, G., Illuminati, F.: Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems. New J. Phys. 8(1), 15 (2006)

    ADS  Google Scholar 

  45. Adesso, G., Illuminati, F.: Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A Math. Theor. 40(28), 7821 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 12165007, 11905064, and 12175199), the Scientific Research Foundation of Jiangxi Provincial Department of Education, China (Grant No. GJJ200624), and the Program of Postgraduate Innovation Foundation of Jiangxi Province (Grant No. YC2022-s490).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangling Cheng or Aixi Chen.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zhong, W., Cheng, G. et al. Genuine magnon–photon–magnon tripartite entanglement in a cavity electromagnonical system based on squeezed-reservoir engineering. Quantum Inf Process 22, 140 (2023). https://doi.org/10.1007/s11128-023-03880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03880-y

Keywords

Navigation