Skip to main content
Log in

Enhancing the controller’s power in teleporting an arbitrary two-qubit state by using the asymmetry of the four-qubit cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we use a quantum channel that is the product of two states, the four-qubit cluster state and the three-qubit partially entangled state. This quantum channel is used as a channel in the two controlled teleportation protocols of an arbitrary two-qubit state. When the controller cooperates, both of these protocols are perfect, i.e., the total success probability and the quantum fidelity of the state received by the receiver are equal to 1. In the two controlled teleportation protocols, the number of qubits held by the controller is the same. However, depending on how the qubits in the channel are distributed to the controller, the controller’s power may be entirely in or below the quantum domain. Thus, the controller’s power is guaranteed when the qubits in the quantum channel are correctly distributed. On the other hand, we also show that the controller’s power depends on the entanglement of the qubits that the controller holds with the rest of the qubits in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 72, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998). https://doi.org/10.1103/PhysRevLett.80.869

    Article  ADS  Google Scholar 

  4. Adesso, G., Illuminati, F.: Equivalence between entanglement and the optimal fidelity of continuous variable teleportation. Phys. Rev. Lett. 95, 150503 (2005). https://doi.org/10.1103/PhysRevLett.95.150503

    Article  ADS  Google Scholar 

  5. Dell’Anno, F., Siena, S.D., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-gaussian resources. Phys. Rev. A 76, 022301 (2007). https://doi.org/10.1103/PhysRevA.76.022301

    Article  ADS  Google Scholar 

  6. Adhikari, S., Majumdar, A.S., Nayak, N.: Teleportation of two-mode squeezed states. Phys. Rev. A 77, 012337 (2008). https://doi.org/10.1103/PhysRevA.77.012337

    Article  ADS  Google Scholar 

  7. Adhikari, S., Majumdar, A.S., Roy, S., Ghosh, B., Nayak, N.: Teleportation via maximally and nonmaximally entangled mixed states. Quantum Inf. Comput 10, 0398 (2010). https://doi.org/10.26421/QIC10.5-6-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011). https://doi.org/10.1103/PhysRevLett.107.270501

    Article  Google Scholar 

  9. Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using nonorthogonal entangled channels. Phys. Scr 85(4), 045001 (2012). https://doi.org/10.1088/0031-8949/85/04/045001

    Article  ADS  MATH  Google Scholar 

  10. Sazim, S., Adhikari, S., Banerjee, S., Pramanik, T.: Quantification of entanglement of teleportation in arbitrary dimensions. Quantum Inf. Process 13, 863–880 (2014). https://doi.org/10.1007/s11128-013-0697-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Liu, D., Huang, Z., Guo, X.: Probabilistic teleportation via quantum channel with partial information. Entropy 17(6), 3621–3630 (2015). https://doi.org/10.3390/e17063621

    Article  ADS  MathSciNet  Google Scholar 

  12. Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single bell state. Phys. Rev. A. 93, 062305 (2016). https://doi.org/10.1103/PhysRevA.93.062305

    Article  ADS  Google Scholar 

  13. Cavalcanti, D., Skrzypczyk, P., Šupic, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017). https://doi.org/10.1103/PhysRevLett.119.110501

    Article  ADS  Google Scholar 

  14. Jeongho, B., Junghee, R., Kaszlikowski, D.: Fidelity deviation in quantum teleportation. J. Phys. A Math. Theor. 51(13), 135302 (2018). https://doi.org/10.1088/1751-8121/aaac35

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Long, G.L.: Two-copy quantum teleportation. Sci. Rep. 8, 13960 (2018). https://doi.org/10.1038/s41598-018-31918-0

    Article  ADS  Google Scholar 

  16. Bouwmeester, D., Pan, J., W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997). https://doi.org/10.1038/37539

  17. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998). https://doi.org/10.1103/PhysRevLett.80.1121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998). https://doi.org/10.1126/science.282.5389.706

    Article  ADS  Google Scholar 

  19. Zhang, T.C., Goh, K.W., Chou, C.W., Lodahl, P., Kimble, H.J.: Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003). https://doi.org/10.1103/PhysRevA.67.033802

    Article  ADS  Google Scholar 

  20. Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005). https://doi.org/10.1103/PhysRevLett.94.220502

    Article  ADS  Google Scholar 

  21. DiGuglielmo, J., Hage, B., Franzen, A., Fiurášek, J., Schnabel, R.: Experimental characterization of gaussian quantum-communication channels. Phys. Rev. A 76, 012323 (2007). https://doi.org/10.1103/PhysRevA.76.012323

    Article  ADS  Google Scholar 

  22. Xiao, S.M., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012). https://doi.org/10.1038/nature11472

    Article  ADS  Google Scholar 

  23. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015). https://doi.org/10.1038/nature14246

    Article  ADS  Google Scholar 

  24. Valivarthi, R., Puigibert, M., Zhou, Q., Aguilar, G.H., Verma, V.B., Marsili, F., Shaw, M.D., Nam, S.W., Oblak, D., Tittel, W.: Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676–680 (2016). https://doi.org/10.1038/nphoton.2016.180

    Article  ADS  Google Scholar 

  25. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998). https://doi.org/10.1103/PhysRevA.58.4394

    Article  ADS  MathSciNet  Google Scholar 

  26. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2000). https://doi.org/10.1103/PhysRevA.70.022329

    Article  ADS  Google Scholar 

  27. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005). https://doi.org/10.1103/PhysRevA.72.022338

    Article  ADS  Google Scholar 

  28. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007). https://doi.org/10.1103/PhysRevA.75.052306

    Article  ADS  Google Scholar 

  29. Medina, I., Semião, F.: Transmission losses in optical qubits for controlled teleportation. Quantum Inf. Process. 16, 235 (2017). https://doi.org/10.1007/s11128-017-1684-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Barasiński, A., Arkhipov, I.I., Svozilík, J.: Localizable entanglement as a necessary resource of controlled quantum teleportation. Sci Rep 8, 15209 (2018). https://doi.org/10.1038/s41598-018-33185-5

    Article  ADS  Google Scholar 

  31. Barasiński, A., Černoch, A., Lemr, K.: Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 122, 170501 (2019). https://doi.org/10.1103/PhysRevLett.122.170501

    Article  ADS  MathSciNet  Google Scholar 

  32. Zarmehi, F., Kochakzadeh, M.H., Abbasi-Moghadam, D., et al.: Efficient circular controlled quantum teleportation and broadcast schemes in the presence of quantum noises. Quantum Inf Process 20, 175 (2021). https://doi.org/10.1007/s11128-021-03088-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Bich, C.T., An, N.B.: Hierarchically controlling quantum teleportations. Quantum Inf Process 18, 245 (2019). https://doi.org/10.1007/s11128-019-2355-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kumar, A., Haddadi, S., Pourkarimi, M.R., et al.: Experimental realization of controlled quantum teleportation of arbitrary qubit states via cluster states. Sci Rep 10, 13608 (2020). https://doi.org/10.1038/s41598-020-70446-8

    Article  ADS  Google Scholar 

  35. Huo, G., Zhang, T., Zha, X., et al.: Controlled asymmetric bidirectional quantum teleportation of two- and three-qubit states. Quantum Inf Process 20, 24 (2021). https://doi.org/10.1007/s11128-020-02956-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Li, Xi-Han., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90, 052305 (2014). https://doi.org/10.1103/PhysRevA.90.052305

    Article  ADS  Google Scholar 

  37. Li, Xi-Han., Ghose, S.: Analysis of n-qubit perfect controlled teleportation schemes from the controller’s point of view. Phys. Rev. A 91, 012320 (2015). https://doi.org/10.1103/PhysRevA.91.012320

    Article  ADS  MathSciNet  Google Scholar 

  38. Jiang, Yt., Mo, Zw.: Comparison and analysis of the control power between two different perfect controlled teleportation schemes using four-particle cluster state. Int J Theor Phys 56, 3084–3091 (2017). https://doi.org/10.1007/s10773-017-3474-8

    Article  MATH  Google Scholar 

  39. Zha, X.-W., Jiang, R.-X.., Wang, M..-R.: Analyzing four-qubit cluster state entanglement symmetry property via control power. Int J Theor Phys 58, 1499–1508 (2019). https://doi.org/10.1007/s10773-019-04036-4

  40. Barasiński, A., Svozilík, J.: Controlled teleportation of qubit states: Relation between teleportation faithfulness, controller’s authority, and tripartite entanglement. Phys. Rev. A 99, 012306 (2019). https://doi.org/10.1103/PhysRevA.99.012306

    Article  ADS  Google Scholar 

  41. Faujdar, J., Kumar, A.: A comparative study to analyze efficiencies of (N+2)-qubit partially entangled states in real conditions from the perspective of n controllers. Quantum Inf Process 20, 64 (2021). https://doi.org/10.1007/s11128-021-02993-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Hop, V.N., Bich, C.T., An, N.B.: On the role of the controller in controlled quantum teleportation. Int J Theor Phys 56, 810–821 (2017). https://doi.org/10.1007/s10773-016-3224-3

    Article  MATH  Google Scholar 

  43. Hou, K., Bao, Dq., Zhu, Cj., et al.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf Process 18, 104 (2019). https://doi.org/10.1007/s11128-019-2218-5

    Article  ADS  MATH  Google Scholar 

  44. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001). https://doi.org/10.1103/PhysRevLett.86.910

    Article  ADS  Google Scholar 

  45. Kiesel, N., Schmid, C., Weber, U., Tóth, G., Gühne, O., Ursin, R., Weinfurter, H.: Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005). https://doi.org/10.1103/PhysRevLett.95.210502

    Article  ADS  Google Scholar 

  46. Park, H.S., Cho, J., Lee, J.Y., Lee, D.H., Choi, S.K.: Two-photon four-qubit cluster state generation based on a polarization-entangled photon pair. Optics Express. 15(26), 17960–17966 (2007). https://doi.org/10.1364/OE.15.017960

    Article  ADS  Google Scholar 

  47. Zyczkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A 34(35), 7111 (2001). https://doi.org/10.1088/0305-4470/34/35/335

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000). https://doi.org/10.1103/PhysRevA.61.052306

    Article  ADS  Google Scholar 

  49. Wang, T.-J., Ghose, S.: Control power of quantum channels is not multiplicative. New J. Phys. 22, 123046 (2020). https://doi.org/10.1088/1367-2630/abd206

    Article  ADS  MathSciNet  Google Scholar 

  50. Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley Publishing Company, Boston (1994)

    Google Scholar 

Download references

Acknowledgements

This works is supported by the Vietnam Ministry of Education and Training under Grant Number B2022-SPH-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hop Nguyen Van.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix presents a mathematical description of the steps performed in the two protocols.

Protocol 1 According to the distribution of qubits of the cluster state (3) of protocol 1, we can write the expression of this cluster state as follows

$$\begin{aligned} \left| C_{4}\right\rangle _{A_{1}B_{1}C_{1}C_{2}}=\frac{1}{2} \sum \limits _{m,n=0}^{1}\left( -1\right) ^{mn}\left| mn\right\rangle _{A_{1}B_{1}}\left| mn\right\rangle _{C_{1}C_{2}}. \end{aligned}$$
(30)

The results of protocol 1 do not depend on whether the sender Alice first performs the Bell measurements or the controller Charlie first performs the measurements because these measurements are independent of each other. To give the expression of state (30) a simple form, we assume that, the first the controller Charlie applies the operator \(CZ_{C_{1}C_{2}}\) to the pair of qubits \(C_{1}\) and \(C_{2},\) then equation (30) becomes

$$\begin{aligned}{} & {} \left| C_{41}\right\rangle _{A_{1}B_{1}C_{1}C_{2}}=CZ_{C_{1}C_{2}}\left| C_{4}\right\rangle _{A_{1}B_{1}C_{1}C_{2}}~ \nonumber \\{} & {} \quad =\frac{1}{2}\sum \limits _{m,n=0}^{1}\left( -1\right) ^{mn}\left| mn\right\rangle _{A_{1}B_{1}}\left( CZ_{C_{1}C_{2}}\left| mn\right\rangle _{C_{1}C_{2}}\right) \\{} & {} \quad =\frac{1}{2}\sum \limits _{m,n=0}^{1}\left| mn\right\rangle _{A_{1}B_{1}}\left| mn\right\rangle _{C_{1}C_{2}}.~ \nonumber \end{aligned}$$
(31)

Using the Bell state formulas

$$\begin{aligned} \left| B_{mn}\right\rangle =\frac{1}{\sqrt{2}}\sum \limits _{i=0}^{1} \left( -1\right) ^{mi}\left| i,n\oplus i\right\rangle , \end{aligned}$$
(32)

then state (31) is rewritten as follows

$$\begin{aligned} \left| C_{41}\right\rangle _{A_{1}B_{1}C_{1}C_{2}}=\frac{1}{2} \sum \limits _{m,n=0}^{1}\left| B_{mn}\right\rangle _{A_{1}B_{1}}\left| B_{mn}\right\rangle _{C_{1}C_{2}} \end{aligned}$$
(33)

and state (4) becomes

$$\begin{aligned} \left| G\left( \theta \right) \right\rangle _{A_{2}B_{2}C_{3}}=\sum \limits _{q=0}^{1}\left| B_{q0}\right\rangle _{A_{2}B_{2}}\left| \widetilde{q}\right\rangle _{C_{3}}, \end{aligned}$$
(34)

in there

$$\begin{aligned} \left| \widetilde{0}\right\rangle _{C_{3}}=\frac{1}{2}\left( \left| 0\right\rangle +\cos \theta \left| 0\right\rangle -\sin \theta \left| 1\right\rangle \right) _{C_{3}}, \left| \widetilde{1}\right\rangle _{C_{3}}=\frac{1}{2}\left( \left| 0\right\rangle -\cos \theta \left| 0\right\rangle +\sin \theta \left| 1\right\rangle \right) _{C_{3}}. \nonumber \\ \end{aligned}$$
(35)

The general state of the two qubits to be teleported (1) can be rewritten as

$$\begin{aligned} {\left| \psi \right\rangle _{XY}=}\sum \limits _{a,b=0}^{1} \alpha _{ab}\left| a,b\right\rangle _{XY}\!, \end{aligned}$$
(36)

in there

$$\begin{aligned} \alpha _{00}=x,\alpha _{01}=ye^{i\varphi _{1}},\alpha _{10}=ze^{i\varphi _{2}},\alpha _{11}=te^{i\varphi _{3}}. \end{aligned}$$
(37)

Then, the product state of the two qubits to be teleported and the quantum channel of protocol 1 can be expressed as

$$\begin{aligned}{} & {} \left| T_{1}\right\rangle ={\left| \psi \right\rangle _{XY}} \left| C_{41}\right\rangle _{A_{1}B_{1}C_{1}C_{2}}\left| G\left( \theta \right) \right\rangle _{A_{2}B_{2}C_{3}} ~ \nonumber \\{} & {} \quad =\frac{1}{2} \sum \limits _{a,b=0}^{1}\sum \limits _{m,n=0}^{1}\sum \limits _{q=0}^{1}\alpha _{ab}\left| a,b\right\rangle _{XY}\left| B_{mn}\right\rangle _{A_{1}B_{1}}\left| B_{q0}\right\rangle _{A_{2}B_{2}}\left| B_{mm}\right\rangle _{C_{1}C_{2}}\left| \widetilde{q}\right\rangle _{C_{3}}.\nonumber \\{} & {} \end{aligned}$$
(38)

Using the Bell state formula (32) and the inverse transformation of the form

$$\begin{aligned} \left| mn\right\rangle =\frac{1}{\sqrt{2}}\sum \limits _{i=0}^{1}\left( -1\right) ^{mi}\left| B_{i,m\oplus n}\right\rangle , \end{aligned}$$
(39)

the equation (38) is rewritten as

$$\begin{aligned} \left| T_{1}\right\rangle =\frac{1}{8}\sum \limits _{i,j=0}^{1}\sum \limits _{k,l=0}^{1}\sum \limits _{m,n=0}^{1}\sum \limits _{q=0}^{1}\sum \limits _{a,b=0}^{1}\alpha _{ab}\left( -1\right) ^{mj\oplus ql\oplus a\left( m\oplus i\right) \oplus b\left( k\oplus q\right) } ~ \nonumber \\ \left| B_{ij}\right\rangle _{XA_{1}}\left| B_{kl}\right\rangle _{YA_{2}}\left| B_{mn}\right\rangle _{C_{1}C_{2}}\left| \widetilde{q}\right\rangle _{C_{3}}\left| n\oplus a\oplus j,l\oplus b\right\rangle _{B_{1}B_{2}}. \end{aligned}$$
(40)

When the controller Charlie applies the rotation gate \(R\left( -\theta \right) \) to qubit \(C_{3},\) equation (35) becomes

$$\begin{aligned} \left| \widetilde{0}\right\rangle _{C_{3}}=\left( \cos \theta /2\right) \left| 0\right\rangle _{C_{3}};\left| \widetilde{1}\right\rangle _{C_{3}}=\left( \sin \theta /2\right) \left| 0\right\rangle _{C_{3}}. \end{aligned}$$
(41)

After the controller Charlie applies the rotation gate \(R\left( -\theta \right) \) to qubit \(C_{3}\), the state (40) becomes

$$\begin{aligned} \left| T_{1}\right\rangle =\frac{1}{8}\sum \limits _{i,j=0}^{1}\sum \limits _{k,l=0}^{1}\sum \limits _{m,n=0}^{1}\sum \limits _{p=0}^{1}\left( -1\right) ^{mj\oplus pl}\beta _{p}\left| B_{ij}\right\rangle _{XA_{1}}\left| B_{kl}\right\rangle _{YA_{2}}\left| B_{mn}\right\rangle _{C_{1}C_{2}}\left| p\right\rangle _{C_{3}}\nonumber \\ \left( \sum \limits _{a,b=0}^{1}\alpha _{ab}\left( -1\right) ^{a\left( m\oplus i\right) \oplus b\left( k\oplus p\right) }\left| n\oplus a\oplus j,l\oplus b\right\rangle _{B_{1}B_{2}}\right) ,\nonumber \\{} & {} \end{aligned}$$
(42)

in there \(\beta _{0}=\cos \theta /2\), \(\beta _{1}=\sin \theta /2.\)

It is clear from equation (42) that if Alice makes two Bell-state measurements on the pairs of qubits \(\left( XA_{1}\right) \), \(\left( YA_{2}\right) \) with outcomes \(\left\{ ij\right\} \), \(\left\{ kl\right\} \) corresponding to finding \(\left| B_{ij}\right\rangle _{XA_{1}}\), \(\left| B_{kl}\right\rangle _{YA_{2}}\). Charlie makes Bell-state measurement on the pair of qubits \(\left( C_{1}C_{2}\right) \) with outcomes \(\left\{ mn\right\} \) corresponding to finding \(\left| B_{mn}\right\rangle _{C_{1}C_{2}}\). Charlie measures qubit \(C_{3}\) in the computational basis \(\left\{ \left| 0\right\rangle _{C_{3}},~\left| 1\right\rangle _{C_{3}}\right\} \) with an outcome \(\left\{ p\right\} \) corresponding to finding \(\left| p\right\rangle _{C_{3}}\), then the state of Bob’s qubits \(B_{1}\) and \(B_{2}\), up to a global phase factor \(\left( -1\right) ^{mj\oplus pl}\), is projected onto

$$\begin{aligned} \left| \psi _{1}\right\rangle _{XY}=\sum \limits _{a,b=0}^{1}\alpha _{ab}\left( -1\right) ^{a\left( m\oplus i\right) \oplus b\left( k\oplus q\right) }\left| n\oplus j\oplus a,l\oplus b\right\rangle _{B_{1}B_{2}}. \end{aligned}$$
(43)

The measurement results of Alice \(\left( \left\{ ij\right\} \text {, }\left\{ kl\right\} \right) \) and Charlie \(\left( \left\{ mn\right\} \text {, }\left\{ p\right\} \right) \) are sent to the receiver Bob over the classical communication channel. To transform state (43) to the original state that Alice wants to send, equation (1), Bob acts on qubits \(B_{1}\) and \(B_{2}\), the unitary recovery operator, which is determined by the following expression

$$\begin{aligned} U_{ijklmnp}=R_{B_{1}}\otimes R_{B_{2}}=\left( Z^{m\oplus i}.X^{j\oplus n}\right) _{B_{1}}\otimes \left( Z^{k\oplus p}.X^{l}\right) _{B_{2}}. \end{aligned}$$
(44)

The probability of Alice and Charlie’s respective measurements is

$$\begin{aligned} P_{ijklmnp}=\left| \frac{\beta _{p}}{8}\right| ^{2}=\frac{\beta _{p}^{2}}{64}. \end{aligned}$$
(45)

The total success probability of protocol 1 is

$$\begin{aligned}{} & {} P_{1}=\sum \limits _{i,j=0}^{1}\sum \limits _{k,l=0}^{1}\sum \limits _{m,n=0}^{1} \sum \limits _{p=0}^{1}P_{ijklmnp} ~ \nonumber \\{} & {} \quad =\sum \limits _{i,j=0}^{1}\sum \limits _{k,l=0}^{1}\sum \limits _{m,n=0}^{1}\sum \limits _{p=0}^{1}\frac{\beta _{p}^{2}}{64}=64\frac{\cos ^{2}\theta /2+\sin ^{2}\theta /2}{64}=1. \end{aligned}$$
(46)

Protocol 2 According to the distribution of qubits of the cluster state in equation (3) of protocol 2, we can write this cluster state as follows

$$\begin{aligned} \left| C_{42}\right\rangle _{A_{1}C_{1}B_{1}C_{2}}=\frac{1}{\sqrt{2}} \sum \limits _{m=0}^{1}\left| B_{m0}\right\rangle _{A_{1}C_{1}}\left| mm\right\rangle _{B_{1}C_{2}}. \end{aligned}$$
(47)

State (4) still has the same form as equation (34) in protocol 1. Then, the product state of the two qubits to be teleported and the quantum channel of protocol 2 can be expressed as

$$\begin{aligned}{} & {} \left| T_{2}\right\rangle ={\left| \psi \right\rangle _{XY}} \left| C_{42}\right\rangle _{A_{1}C_{1}B_{1}C_{2}}\left| G\left( \theta \right) \right\rangle _{A_{2}B_{2}C_{3}}~ \nonumber \\{} & {} \quad =\frac{1}{\sqrt{2}} \sum \limits _{a,b=0}^{1}\sum \limits _{m=0}^{1}\sum \limits _{q=0}^{1}\alpha _{ab}\left| a,b\right\rangle _{XY}\left| B_{m0}\right\rangle _{A_{1}C_{1}}\left| B_{q0}\right\rangle _{A_{2}B_{2}}\left| mm\right\rangle _{B_{1}C_{2}}\left| \widetilde{q}\right\rangle _{C_{3}}.\nonumber \\{} & {} \end{aligned}$$
(48)

Using the formula for the Bell state (32) and the inverse transformation (39), the state (48) can be rewritten as:

$$\begin{aligned} \left| T_{2}\right\rangle =\frac{1}{4\sqrt{2}}\sum \limits _{i,j=0}^{1} \sum \limits _{k,l=0}^{1}\sum \limits _{m=0}^{1}\sum \limits _{q=0}^{1}\sum \limits _{a,b=0}^{1}\alpha _{ab}\left( -1\right) ^{mj\oplus ql\oplus a\left( m\oplus i\right) \oplus b\left( k\oplus q\right) } ~ \nonumber \\ \left| B_{ij}\right\rangle _{XA_{1}}\left| B_{kl}\right\rangle _{YA_{2}}\left| mm\right\rangle _{B_{1}C_{2}}\left| \widetilde{q}\right\rangle _{C_{3}}\left| a\oplus j,l\oplus b\right\rangle _{C_{1}B_{2}}. \end{aligned}$$
(49)

After the controller Charlie applies the rotation gate \(R\left( \theta \right) \) to qubit \(C_{3}\), the state (49) becomes

$$\begin{aligned} \left| T_{2}\right\rangle =\frac{1}{4\sqrt{2}}\sum \limits _{i,j=0}^{1} \sum \limits _{k,l=0}^{1}\sum \limits _{m=0}^{1}\sum \limits _{p=0}^{1}\left( -1\right) ^{mj\oplus pl}\beta _{p}\left| B_{ij}\right\rangle _{XA_{1}}\left| B_{kl}\right\rangle _{YA_{2}}\left| mm\right\rangle _{B_{1}C_{2}}\left| p\right\rangle _{C_{3}} ~ \nonumber \\ \left( \sum \limits _{a,b=0}^{1}\alpha _{ab}\left( -1\right) ^{a\left( m\oplus i\right) \oplus b\left( k\oplus p\right) }\left| a\oplus j,l\oplus b\right\rangle _{C_{1}B_{2}}\right) .~ \nonumber \\{} & {} \end{aligned}$$
(50)

It is now clear from equation (50) that if Alice makes two Bell-state measurements on the pairs of qubits \(\left( XA_{1}\right) \), \(\left( YA_{2}\right) \) with outcomes \(\left\{ ij\right\} \), \(\left\{ kl\right\} \) corresponding to finding \(\left| B_{ij}\right\rangle _{XA_{1}}\), \(\left| B_{kl}\right\rangle _{YA_{2}}\). Charlie measures qubits \(B_{1},\) \(C_{2}\) and qubit \(C_{3}\) on a computational basis \(\left\{ \left| 0\right\rangle ,\left| 1\right\rangle \right\} \) with an outcome \( \left\{ mn\right\} \left( n=m\right) \) and \(\left\{ p\right\} \) corresponding to finding \(\left| mm\right\rangle _{B_{1}C_{2}}\) and \( \left| p\right\rangle _{C_{3}}\), then the state of Bob’s qubits \(C_{1}\) and \(B_{2}\), up to a global phase factor \(\left( -1\right) ^{mj\oplus pl}\), is projected onto

$$\begin{aligned} \left| \psi _{2}\right\rangle _{XY}=\sum \limits _{a,b=0}^{1}\alpha _{ab}\left( -1\right) ^{a\left( m\oplus i\right) \oplus b\left( k\oplus q\right) }\left| j\oplus a,l\oplus b\right\rangle _{C_{1}B_{2}}. \end{aligned}$$
(51)

The measurement results of Alice \(\left( \left\{ ij\right\} \text {, }\left\{ kl\right\} \right) \) and Charlie \(\left( \left\{ mn\right\} \text {, }\left\{ p\right\} \right) \) are sent to the receiver Bob over the classical communication channel. To transform state (51) to the original state that Alice wants to send, equation (1), Bob acts on qubits \(C_{1}\) and \(B_{2}\) the unitary recovery operator, which is determined by the following expression

$$\begin{aligned} U_{ijklmp}=R_{C_{1}}\otimes R_{B_{2}}=\left( Z^{m\oplus i}.X^{j}\right) _{C_{1}} \otimes \left( Z^{k\oplus p}.X^{l}\right) _{B_{2}}. \end{aligned}$$
(52)

The probability of Alice and Charlie’s respective measurements is

$$\begin{aligned} P_{ijklmp}=\left| \frac{\beta _{p}}{4\sqrt{2}}\right| ^{2}=\frac{ \beta _{p}^{2}}{32}. \end{aligned}$$
(53)

The total success probability of protocol 2 is

$$\begin{aligned}{} & {} P_{2}=\sum \limits _{i,j=0}^{1}\sum \limits _{k,l=0}^{1}\sum \limits _{m=0}^{1} \sum \limits _{p=0}^{1}P_{ijklmp} ~ \nonumber \\{} & {} \quad =\sum \limits _{i,j=0}^{1}\sum \limits _{k,l=0}^{1}\sum \limits _{m=0}^{1}\sum \limits _{p=0}^{1}\frac{\beta _{p}^{2}}{32}=32\frac{\cos ^{2}\theta /2+\sin ^{2}\theta /2}{32}=1. \end{aligned}$$
(54)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, H.N. Enhancing the controller’s power in teleporting an arbitrary two-qubit state by using the asymmetry of the four-qubit cluster state. Quantum Inf Process 22, 135 (2023). https://doi.org/10.1007/s11128-023-03882-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03882-w

Keywords

Navigation