Skip to main content
Log in

Classical-driving-assisted quantum correlation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The dynamical behaviour of quantum correlations of two identical atoms driven by classical fields and embedded in two independent non-Markovian environments is investigated. It is shown that how the global quantum discord and the local quantum uncertainty as the measures of quantum correlations can be controlled and protected by manipulating the classical-driving strength. Moreover, we demonstrate that the decay process of the quantum correlations can be slowed down by adjusting the central frequency of the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data of the present study are available from the corresponding author upon a reasonable request.

References

  1. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zurek, W.H.: Einselection and decoherence from an information theory perspective. Ann. Phys. (Leipzig) 9, 855 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  6. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  7. Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  8. Maniscalco, S., Francisca, F., Zaffino, R., Gullo, N., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Mundarain, D., Orszag, M.: Entanglement preservation by continuous distillation. Phys. Rev. A 79, 052333 (2009)

    Article  ADS  Google Scholar 

  10. Rossi, R., Jr.: Entanglement preservation of two coupled modes. Phys. Lett. A 374, 2331 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hou, Y., Zhang, G., Chen, Y., Fan, H.: Preservation of entanglement in a two-qubit-spin coupled system. Ann. Phys. 327, 292 (2012)

    Article  ADS  MATH  Google Scholar 

  12. Basit, A., Badshah, F., Ali, H., Ge, G.Q.: Protecting quantum coherence and discord from decoherence of depolarizing noise via weak measurement and measurement reversal. EPL 118, 30002 (2017)

    Article  ADS  Google Scholar 

  13. Ba An, N.: Protecting entanglement of atoms stored in a common nonperfect cavity without measurements. Phys. Lett. A 337, 2520 (2013)

    Article  MATH  Google Scholar 

  14. Behzadi, N., Ahansaz, B., Faizi, E.: Quantum coherence and entanglement preservation in Markovian and non-Markovian dynamics via additional qubits. Eur. Phys. J. D 71, 280 (2017)

    Article  ADS  Google Scholar 

  15. Man, Z.X., Xia, Y.J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  16. Zhang, Y.J., Han, W., Xia, Y.J., Fan, H.: Classical-driving-assisted entanglement dynamics control. Ann. Phys. 379, 187 (2017)

    Article  ADS  MATH  Google Scholar 

  17. Liao, Q.H., Zhang, Q., Xu, J., Yan, Q.R., Liu, Y., Chen, A.: Control and transfer of entanglement between two atoms driven by classical fields under dressed-state representation. Commun. Theor. Phys. 65, 684 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zhang, J.S., Xu, J.B., Lin, Q.: Controlling entanglement sudden death in cavity QED by classical driving fields. Eur. Phys. J. D 51, 283 (2009)

    Article  ADS  Google Scholar 

  19. Nourmandipour, A., Vafafard, A., Mortezapour, A., Franzos, R.: Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep. 11, 16259 (2021)

    Article  ADS  Google Scholar 

  20. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)

    Article  ADS  Google Scholar 

  21. Xiao, X., Fang, M.F., Li, Y.L.: Non-Markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B At. Mol. Opt. Phys. 43, 185505 (2010)

    Article  ADS  Google Scholar 

  22. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  24. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  25. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  26. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  27. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, S., Li, H., Lu, X., Chen, B.: Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems. Sci. China Phys. Mech. Astron. 62, 990311 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ahansaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajihoseinlou, H., Ahansaz, B., Eghbalifam, F. et al. Classical-driving-assisted quantum correlation. Quantum Inf Process 22, 136 (2023). https://doi.org/10.1007/s11128-023-03885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03885-7

Keywords

Navigation