Skip to main content
Log in

Photon statistics and quantum field entropy in the anti-jaynes-cummings model: a comparison with the jaynes-cummings interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A clear comparison of photon statistics through analysis of time evolution of the Mandel parameter during the anti-Jaynes-Cummings interaction and the well known Jaynes-Cummings interaction when a two-level atom in an initial ground state interacts with a field mode in an initial coherent state is provided. In some limits of sum frequency parameter and mean photon number during the anti-Jaynes-Cummings interaction, the field is purely sub-Poissonian. In the contrary, within the corresponding limits of frequency detuning, photon statistics during the corresponding Jaynes-Cummings interaction is dominantly super-Poissonian consistent with earlier results. When variation of frequency detuning and the corresponding sum frequency is considered during the Jaynes-Cummings, anti-Jaynes-Cummings interactions respectively, time-evolution of field entropy is of the same form but at arbitrary low residual field mode frequency values, the anti-Jaynes-Cummings interaction displayed slightly higher degree. As visualised, an increase in frequency detuning during the Jaynes-Cummings process resulted in a decrease in the field entropy, just like when the corresponding sum frequency is raised during the anti-Jaynes-Cummings interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data required is available in this manuscript.

References

  1. Rabi, I.: On the process of space quantization. Phys. Rev. 49(4), 324 (1936)

    ADS  MATH  Google Scholar 

  2. Rabi, I.I.: Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652 (1937)

    ADS  MATH  Google Scholar 

  3. Braak, D.: Integrability of the rabi model. Phys. Rev. Lett. 107(10), 100401 (2011)

    ADS  Google Scholar 

  4. Fox, A.M.: Quantum Optics: An Introduction, vol. 15. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  5. Irish, E.K.: Generalized rotating-wave approximation for arbitrarily large coupling. Phys. Rev. Lett. 99(17), 173601 (2007)

    ADS  Google Scholar 

  6. Forn-Díaz, P., Lisenfeld, J., Marcos, D., Garcia-Ripoll, J.J., Solano, E., Harmans, C., Mooij, J.: Observation of the bloch-siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105(23), 237001 (2010)

    ADS  Google Scholar 

  7. Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13(1), 44–47 (2017)

    Google Scholar 

  8. Braak, D.: A generalized G-function for the quantum rabi model. Ann. Phys. (Berlin) 525(3), 23–28 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Braak, D.: Analytical solutions of basic models in quantum optics. In: Applications+ Practical Conceptualization+ Mathematics= Fruitful Innovation, pp. 75–92. Springer, London (2016)

    Google Scholar 

  10. Chen, Q.-H., Wang, C., He, S., Liu, T., Wang, K.-L.: Exact solvability of the quantum Rabi model using Bogoliubov operators. Phys. Rev. A 86(2), 023822 (2012)

    ADS  Google Scholar 

  11. Zhong, H., Xie, Q., Batchelor, M.T., Lee, C.: Analytical eigenstates for the quantum Rabi model. J. Phys. A Math. Theor. 46(41), 415302 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Maciejewski, A.J., Przybylska, M., Stachowiak, T.: Full spectrum of the Rabi model. Phys. Lett. A 378(1–2), 16–20 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Judd, B.R.: Exact solutions to a class of Jahn-Teller systems. J. Phys. C 12(9), 1685 (1979)

    ADS  Google Scholar 

  14. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Google Scholar 

  15. Omolo, J.A.: The anti-Jaynes-Cummings model is solvable: quantum Rabi model in rotating and counter-rotating frames; following the experiments. arXiv preprint arXiv:2103.09546 (2021)

  16. Omolo, J.A.: Conserved excitation number and u (1)-symmetry operator for the anti-rotating (anti-jaynes-cummings) term of the rabi hamiltonian. arXiv preprint arXiv:2103.06577 (2021)

  17. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  18. Omolo, J.A.: Symmetry conjugates and dynamical properties of the quantum Rabi model. arXiv preprint arXiv:2112.12514 (2021)

  19. Satyanarayana, M.V., Rice, P., Vyas, R., Carmichael, H.: Ringing revivals in the interaction of a two-level atom with squeezed light. JOSA B 6(2), 228–237 (1989)

    ADS  Google Scholar 

  20. Moya-Cessa, H., Vidiella-Barranco, A.: On the interaction of two-level atoms with superpositions of coherent states of light. J. Mod. Opt. 42(7), 1547–1552 (1995)

    ADS  Google Scholar 

  21. Yurke, B., Stoler, D.: Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57(1), 13 (1986)

    ADS  Google Scholar 

  22. Gomes, A., Vidiella-Barranco, A.: Enhancement of atom-field transfer of coherence in a two-photon micromaser assisted by a classical field. Appl. Math. Inf. Sci. 8(2), 727 (2014)

    Google Scholar 

  23. Agarwal, G.S.: Vacuum-field rabi oscillations of atoms in a cavity. JOSA B 2(3), 480–485 (1985)

    ADS  Google Scholar 

  24. Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4(7), 205–207 (1979)

    ADS  Google Scholar 

  25. Mandel, L.: Non-classical states of the electromagnetic field. Phys. Scripta 1986(T12), 34 (1986)

    Google Scholar 

  26. Phoenix, S., Knight, P.: Fluctuations and entropy in models of quantum optical resonance. Ann. Phys. 186(2), 381–407 (1988)

    ADS  MATH  Google Scholar 

  27. Gea-Banacloche, J.: Collapse and revival of the state vector in the Jaynes-Cummings model: an example of state preparation by a quantum apparatus. Phys. Rev. Lett. 65(27), 3385 (1990)

    ADS  Google Scholar 

  28. Teich, M.C., Saleh, B.E.: I photon bunching and antibunching. Prog. Opt. 26, 1–104 (1988)

    ADS  Google Scholar 

  29. Teich, M.C., Saleh, B.E.: Squeezed state of light. Quant. Opt. 1(2), 153 (1989)

    ADS  Google Scholar 

  30. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70(9), 1187 (1993)

    ADS  Google Scholar 

  32. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  33. Scully, M.O., Zubairy, M.S., et al.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  34. Dung, H.T., Shumovsky, A., Bogolubov, N., Jr.: Antibunching and sub-Poissonian photon statistics in the Jaynes-Cummings model. Opt. Commun. 90(4–6), 322–328 (1992)

    ADS  Google Scholar 

  35. Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18(2), 160–170 (1970)

    ADS  MathSciNet  Google Scholar 

  36. Phoenix, S.J., Knight, P.: Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44(9), 6023 (1991)

    ADS  Google Scholar 

  37. Gerry, C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  38. Colegrave, R.K., Ramjit, U.A.T.: Resonant atom-field interaction with few photons. Phys. A: Stat. Mech. Appl. 161(1), 128–139 (1989)

    Google Scholar 

  39. Bužek, V., Moya-Cessa, H., Knight, P., Phoenix, S.: Schrödinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution. Phys. Rev. A 45(11), 8190 (1992)

    ADS  Google Scholar 

  40. Omolo, J. A.: On atomic state purity operator, degree of state purity and concurrence in the JC and anti-JC models. arXiv preprint arXiv:2207.02730 (2022)

  41. Eberly, J., Narozhny, N., Sanchez-Mondragon, J.: Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44(20), 1323–1325 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Gea-Banacloche, J.: Atom-and field-state evolution in the Jaynes-Cummings model for large initial fields. Phys. Rev. A 44(9), 5913 (1991)

    ADS  Google Scholar 

  43. Gea-Banacloche, J.: A new look at the Jaynes-Cummings model for large fields: Bloch sphere evolution and detuning effects. Opt. Commun. 88(4–6), 531–550 (1992)

    ADS  Google Scholar 

  44. Shore, B., Knight, P.: The jaynes-cummings revival. In: Grandy, W.T., Jr., Milonni, P.W. (eds.) Physics and Probability : Essays in Honour of Edwin T Jaynes, pp. 15–32. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  45. Phoenix, S.J., Knight, P.: Comment on collapse and revival of the state vector in the Jaynes-Cummings model: an example of state preparation by a quantum apparatus. Phys. Rev. Lett. 66(21), 2833 (1991)

    ADS  Google Scholar 

  46. Cardoso, G.C., Pradhan, P., Morzinski, J., Shahriar, M.S.: In-situ absolute phase detection of a microwave field via incoherent fluorescence. Phys. Rev. A 71, 063408 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

I thank Maseno University, Department of Physics and Materials Science for providing a great environment to carry out this study and positive discussions with Prof. Joseph Akeyo Omolo who developed the theoretical model applied in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author wrote and analysed each section of this manuscript as presented.

Corresponding author

Correspondence to Christopher Mayero.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest towards publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayero, C. Photon statistics and quantum field entropy in the anti-jaynes-cummings model: a comparison with the jaynes-cummings interaction. Quantum Inf Process 22, 182 (2023). https://doi.org/10.1007/s11128-023-03912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03912-7

Keywords

Navigation