Skip to main content
Log in

Expanding the sharpness parameter area based on sequential \(3{\rightarrow }1\) parity-oblivious quantum random access code

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the unsharp measurement technology, double classical correlation witness violation can be realized using suitable sharpness parameters. In this paper, we study the sequential \(3{\rightarrow }1\) parity-oblivious quantum random access code using different sharpness parameters for different measurement settings. By constructing a suitable measurement strategy, a protocol that can realize double classical correlation witness violation with a much wider range of sharpness parameter is proposed. We find that double classical correlation witness violation can be achieved even when the first decoder performs the unsharp measurements with near-maximum strength. Our result sheds new light on the interplay between quantum correlation and unsharp measurement. Then, we apply our measurement strategy to sequential semi-device-independent randomness certification and discuss the generated randomness of sequential decoders under different sharpness parameters based on the correlation witness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. In: Proceedings of 31st ACM Symposium on Theory of Computing, pp. 376–383 (1999)

  2. Ambainis, A., Leung, D., Mancinska, L., et al.: Quantum random access codes with shared randomness. arXiv: 0810.2937 (2008)

  3. Wiesner, S.: Conjugate coding. ACM Sigact. News 15, 78–88 (1983)

    Article  MATH  Google Scholar 

  4. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proceedings of 40th Annual Symposium on Foundations of Computer Science, pp. 369–377 (1999)

  5. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., et al.: (4, 1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits. New J. Phys. 8, 129 (2006)

    Article  ADS  Google Scholar 

  6. Iwama1, K., Nishimura, H., Raymond, R., Yamashita, S.: Unbounded-error One-way Classical and Quantum Communication Complexity. Lecture Notes in Computer Science, pp. 100–121 (2007)

  7. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casaccino, A., Galvao, E.F., Severini, S., et al.: Extrema of discrete Wigner functions and applications. Phys. Rev. A 78, 022310 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Tavakoli, A., Hameedi, A., Marques, B., et al.: Quantum random access codes using single \(d\)-Level systems. Phys. Rev. Lett. 114, 170502 (2015)

    Article  ADS  Google Scholar 

  10. Spekkens, R.W., Buzacott, D.H., Keehn, A.J., et al.: Preparation contextuality powers parity-oblivious multiplexing. Phys. Rev. Lett. 102, 010401 (2009)

    Article  ADS  Google Scholar 

  11. Pawłowski, M., Żukowski, M.: Entanglement-assisted random access codes. Phys. Rev. A 81, 042326 (2010)

    Article  ADS  Google Scholar 

  12. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. In: Thomas, W., Weil, P. (eds.) Lecture Notes in Computer Science (STACS 2007 SE52), vol. 4393. Springer, Berlin (2007)

    Google Scholar 

  13. Kerenidis, I., De Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. In: Proceedings of 35st ACM Symposium on Theory of Computing, pp. 106–115 (2003)

  14. Kerenidis, I.: Quantum encodings and applications to locally decodable codes and communication complexity. University of California at Berkeley (2004)

  15. Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302 (2011)

    Article  ADS  Google Scholar 

  16. Li, H.W., Yin, Z.Q., Wu, Y.C., et al.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)

    Article  ADS  Google Scholar 

  17. Li, D.D., Wen, Q.Y., Wang, Y.K., et al.: Security of semi-device-independent random number expansion protocols. Sci. Rep. 5, 15543 (2015)

    Article  ADS  Google Scholar 

  18. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  19. Silva, R., Gisin, N., Guryanova, Y., et al.: Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015)

    Article  ADS  Google Scholar 

  20. Schiavon, M., Calderaro, L., Pittaluga, M.: Three-observer Bell inequality violation on a two-qubit entangled state. Quantum Sci. Technol. 2, 015010 (2017)

    Article  ADS  Google Scholar 

  21. Li, H.W., Zhang, Y.S., An, X.B.: Three-observer classical dimension witness violation with weak measurement. Commun. Phys. 1(1), 10 (2018)

    Article  ADS  Google Scholar 

  22. Zhang, T.G., Fei, S.M.: Sharing quantum nonlocality and genuine nonlocality with independent observables. Phys. Rev. A 103, 032216 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hu, M.J., Zhou, Z.Y., Hu, X.M., et al.: Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. NPJ Quant. Inform. 4, 63 (2018)

    Article  ADS  Google Scholar 

  24. An, X.B., Li, H.W., Yin, Z.Q., et al.: Experimental three-party quantum random number generator based on dimension witness violation and weak measurement. Opt. Lett. 43(14), 3437–3440 (2018)

    Article  ADS  Google Scholar 

  25. Fang, W., Li, J., Wei, M., et al.: Proof-of-principle demonstration of sequential \(3{\rightarrow }1\) quantum random access code via cascaded measurements. Opt. Express. 30(5), 8126–8135 (2022)

    Article  ADS  Google Scholar 

  26. Srivastava, C., Pandit, M., Sen, U.: Entanglement witnessing by arbitrarily many independent observers recycling a local quantum shared state. Phys. Rev. A 105(6), 062413 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gupta, S., Maity, A.G., Das, D., et al.: Genuine Einstein–Podolsky–Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 103, 022421 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Maity, A.G., Das, D., Ghosal, A., et al.: Detection of genuine tripartite entanglement by multiple sequential observers. Phys. Rev. A 101, 042340 (2020)

    Article  ADS  Google Scholar 

  29. Das, D., Ghosal, A., Maity, A.G., et al.: Ability of unbounded pairs of observers to achieve quantum advantage in random access codes with a single pair of qubits. Phys. Rev. A 104, L060602 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  30. Mohan, K., Tavakoli, A., Brunner, N.: Sequential random access codes and self-testing of quantum measurement instruments. New J. Phys. 21, 083034 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wei, S.H., Guo, F.Z., Gao, F., et al.: Certification of three black boxes with unsharp measurements using \(3{\rightarrow }1\) sequential quantum random access codes. New J. Phys. 23, 053014 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. Mukherjee, S., Pan, A.K.: Semi-device-independent certification of multiple unsharpness parameters through sequential measurements. Phys. Rev. A 104, 062214 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. Brown, P.J., Colbeck, R.: Arbitrarily many independent observers can share the nonlocality of a single maximally entangled qubit pair. Phys. Rev. Lett. 125, 090401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. Xiao, Y., Han, X.H., Fan, X., et al.: Widening the sharpness modulation region of an entanglement-assisted sequential quantum random access code: Theory, experiment, and application. Phys. Rev. Res. 3, 023081 (2021)

    Article  Google Scholar 

  35. Li, H.W., Pawłowski, M., Yin, Z.Q., et al.: Semi-device-independent randomness certification using \(n{\rightarrow }1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)

    Article  ADS  Google Scholar 

  36. Wang, X., Yuan, J., Zhou, Y., et al.: Semi-device-independent randomness expansion using \(n{\rightarrow }1\) sequential quantum random access codes. Quant. Inform. Process. 20, 346 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Li, H.W., Yin, Z.Q., Pawłowski, M., et al.: Detection efficiency and noise in a semi-device-independent randomness-extraction protocol. Phys. Rev. A 91, 032305 (2015)

    Article  ADS  Google Scholar 

  38. Mannalath, V., Pathak, A.: Bounds on semi-device-independent quantum random-number expansion capabilities. Phys. Rev. A 105, 022435 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  39. Konig, R., Renner, R., Schaffner, C.: The operational meaning of min-and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62171056, 61973021) and Henan Key Laboratory of Network Cryptography Technology (LNCT2022-A03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenzhuo Guo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Guo, F., Dong, H. et al. Expanding the sharpness parameter area based on sequential \(3{\rightarrow }1\) parity-oblivious quantum random access code. Quantum Inf Process 22, 195 (2023). https://doi.org/10.1007/s11128-023-03924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03924-3

Keywords

Navigation