Skip to main content
Log in

Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A novel quantum neural network(QNN) is proposed, in which quantum probability image encoding(QPIE) and specially designed ansatz are used. QPIE can exponentially reduce qubits for image encoding by using quantum superposition. The parameter gates in ansatz are selected from the universal gate set for quantum computing, which guarantees the expressibility of models. The proposed QNN can be trained by supervised learning. In this article, various experiments are conducted to explore the factors that affect accuracy. The results derive from MNIST show that both the improvement of resolution and the repetition of layers have a positive contribution to accuracy. The enhancement of the expressibility of a single layer by replacing CX gates with \(\hbox {R}_y\) gates also improves the performance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  3. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014) arXiv:1411.4028

  6. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  7. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  8. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  9. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  ADS  Google Scholar 

  10. Grimsley, H.R., Economou, S.E., Barnes, E., Mayhall, N.J.: An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  11. Menneer, T., Narayanan, A.: Quantum-inspired neural networks. Technical Report R329, University of Exeter, Exeter (1995).

  12. Shi, J., Li, Z., Lai, W., Li, F., Shi, R., Feng, Y., Zhang, S.: Two End-to-end Quantum-inspired Deep Neural Networks for Text Classification. IEEE, New York (2021). https://doi.org/10.1109/TKDE.2021.3130598

    Book  Google Scholar 

  13. Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)

    Article  ADS  Google Scholar 

  14. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  ADS  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors (2018) arXiv:1802.06002

  18. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/ (2010)

  19. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)

    Article  Google Scholar 

  20. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  21. Zeng, Y., Wang, H., He, J., Huang, Q., Chang, S.: A multi-classification hybrid quantum neural network using an all-qubit multi-observable measurement strategy. Entropy 24(3), 394 (2022)

    Article  ADS  Google Scholar 

  22. Zhao, W., Wang, Y., Qu, Y., Ma, H., Wang, S.: Binary classification quantum neural network model based on optimized grover algorithm. Entropy 24(12), 1783 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  23. Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. NPJ Quant. Inf. 4(1), 1–8 (2018)

    Google Scholar 

  24. Oh, S., Choi, J., Kim, J.: A tutorial on quantum convolutional neural networks (qcnn). In: 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 236–239 (2020)

  25. Li, W., Chu, P.-C., Liu, G.-Z., Tian, Y.-B., Qiu, T.-H., Wang, S.-M.: An image classification algorithm based on hybrid quantum classical convolutional neural network. Quantum Eng. 2022 (2022)

  26. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference Quantum Information and Computation, pp. 137–147 (2003)

  27. Latorre, J.I.: Image compression and entanglement (2005) arXiv:quant-ph/0510031

  28. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quant. Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., Lu, K., Gao, Y., Wang, M.: Neqr: a novel enhanced quantum representation of digital images. Quant. Inf. Process. 12(8), 2833–2860 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Yao, X.-W., Wang, H., Liao, Z., Chen, M.-C., Pan, J., Li, J., Zhang, K., Lin, X., Wang, Z., Luo, Z.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7(3), 031041 (2017)

    Google Scholar 

  31. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. American Association of Physics Teachers, College Park (2002)

    MATH  Google Scholar 

  32. Kitaev, A.Y., Shen, A., Vyalyi, M.N., Vyalyi, M.N.: Classical and Quantum Computation, vol. 47. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  33. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  34. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019)

    Article  ADS  Google Scholar 

  35. Shi, J., Wang, W., Lou, X., Zhang, S., Li, X.: IEEE Transaction Pattern Analysis and Machine Intelligence. Parameterized Hamiltonian learning with quantum circuit, IEEE, New York (2022). https://doi.org/10.1109/TPAMI.2022.3203157

    Book  Google Scholar 

  36. Shi, J., Tang, Y., Lu, Y., Feng, Y., Shi, R., Zhang, S.: IEEE Transactions on Pattern Analysis and Machine Intelligence. Quantum circuit learning with parameterized boson sampling, IEEE, Data Eng (2021)

    Google Scholar 

  37. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2(12), 1900070 (2019)

    Article  Google Scholar 

  38. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)

    Article  ADS  Google Scholar 

  39. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), 032331 (2019)

    Article  ADS  Google Scholar 

  40. Broughton, M., Verdon, G., McCourt, T., Martinez, A.J., Yoo, J.H., Isakov, S.V., Massey, P., Halavati, R., Niu, M.Y., Zlokapa, A., et al.: Tensorflow quantum: A software framework for quantum machine learning (2020) arXiv:2003.02989

Download references

Funding

This work was supported by the fundamental research funds for the central universities [Project No.K20210337]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianliang Hu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Q., Hu, X. Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification. Quantum Inf Process 22, 184 (2023). https://doi.org/10.1007/s11128-023-03929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03929-y

Keywords

Navigation