Skip to main content
Log in

Block-wise correlations in quantum evolutionary system with pure initial state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the block-wise correlations in a quantum spin system in the processes when certain blocks do not interact with each other. This happens, for instance, in the evolution governed by the Hamiltonian conserving the excitation number in the spin system (i.e., the z-projection of the total spin momentum in the system governed by the XX-Hamiltonian). We compare the entanglement in a particular fixed-excitation block with the entanglement in a complete state. We also study the entanglement in the multi-excitation blocks including several fixed-excitation blocks. Wootters criterion and Fisher information are taken as measures of quantum entanglement in a homogeneous spin system governed by the XX-Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  2. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  3. Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301(R) (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gualdi, G., Kostak, V., Marzoli, I., Tombesi, P.: Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008)

    Article  ADS  Google Scholar 

  5. Campos Venuti, L., Giampaolo, S.M., Illuminati, F., Zanardi, P.: Long-distance entanglement and quantum teleportation in XX spin chains. Phys. Rev. A 76, 052328 (2007)

    Article  ADS  Google Scholar 

  6. Doronin, S.I., Fel’dman, E.B., Zenchuk, A.I.: Relationship between probabilities of the state transfers and entanglements in spin systems with simple geometrical configurations. Phys. Rev. A 79, 042310 (2009)

    Article  ADS  Google Scholar 

  7. Gualdi, G., Marzoli, I., Tombesi, P.: Entanglement generation and perfect state transfer in ferromagnetic qubit chains. New J. Phys. 11, 063038 (2009)

    Article  ADS  Google Scholar 

  8. Doronin, S.I., Zenchuk, A.I.: Quantum correlations responsible for remote state creation: strong and weak control parameters. Quantum Inf. Process. 16(3), 69 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Doronin, S.I., Zenchuk, A.I.: Relay entanglement and clusters of correlated spins. Quantum Inf. Process. 17, 126 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Tóth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012)

    Article  ADS  Google Scholar 

  12. Gärttner, M., Hauke, Ph., Rey, A.M.: Relating out-of-time-order correlations to entanglement via multiple-quantum coherences. Phys. Rev. Lett. 120, 040402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hyllus, Ph., Laskowski, W., Krischek, R., Schwemmer, Ch., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  14. Luo, Sh.: Wigner-Yanase skew information vs. quantum Fisher information. Proc. Am. Math. Soc. 132(3), 885 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, Sh.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(18), 180403 (2003)

    Article  ADS  Google Scholar 

  16. Chen, Z.: Wigner–Yanase skew information as tests for quantum entanglement. Phys. Rev. A 71, 052302 (2005)

    Article  ADS  Google Scholar 

  17. Li, T., Ze-Qian, Ch.: Concurrence and Wigner–Yanase skew information. Chin. Phys. Lett. 23(3), 542 (2006)

    Article  ADS  Google Scholar 

  18. Banik, M., Deb, P., Bhattacharya, S.: Wigner–Yanase skew information and entanglement generation in quantum measurement. Quant. Inf. Proc. 16, 97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bello, M., Creffield, C.E., Platero, G.: Sublattice dynamics and quantum state transfer of doublons in two-dimensional lattices. Phys. Rev. B 95, 094303 (2017)

    Article  ADS  Google Scholar 

  20. Derevyagin, M., Dunne, G.V., Mograby, G., Teplyaev, A.: Perfect quantum state transfer on diamond fractal graphs. Quantum Inf. Process. 19, 328 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kandel, Y.P., Qiao, H., Fallahi, S., Gardner, G.C., Manfra, M.J., Nichol, J.M.: Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain. Nat. Commun. 12, 2156 (2021)

    Article  ADS  Google Scholar 

  22. Coden, D.S.A., Gómez, S.S., Ferrón, A., Osenda, O.: Controlled quantum state transfer in XX spin chains at the quantum speed limit author links open overlay panel. Phys. Lett. A 387, 127009 (2021)

    Article  MATH  Google Scholar 

  23. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  24. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. P 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  25. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  26. Fel’dman, E. B., Zenchuk, A. I.: Coherence evolution and transfer supplemented by sender’s initial-state restoring. JETP 125(6), 1042 (2017)

    Article  ADS  Google Scholar 

  27. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  29. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gühne, O., Tóth, G., Briegel, H.J.: Multipartite entanglement in spin chains. New J. Phys. 7, 229 (2005)

    Article  Google Scholar 

  32. Bochkin, G.A., Fel’dman, E.B., Zenchuk, A.I.: Transfer of scaled multiple-quantum coherence matrices. Quant. Inf. Proc. 17, 218 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fel’dman, E.B., Pechen, A.N., Zenchuk, A.I.: Complete structural restoring of transferred multi-qubit quantum state. Phys. Lett. A 413, 127605 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was performed as a part of a state task, State Registration No. AAAA-A19-119071190017-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zenchuk.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doronin, S.I., Fel’dman, E.B. & Zenchuk, A.I. Block-wise correlations in quantum evolutionary system with pure initial state. Quantum Inf Process 22, 188 (2023). https://doi.org/10.1007/s11128-023-03933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03933-2

Keywords

Navigation