Skip to main content

Advertisement

Log in

Tripartite quantum correlations in XXZ Heisenberg spin chain with Dzyaloshinskii–Moriya interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlations as the information resources play an important role in quantum computing and information processing. Most of the previous studies on quantum correlation dynamics are limited to bipartite systems, but only partial solutions are known to detect and quantify of multipartite systems. In this paper, we exploit the notions of tripartite quantum discord \({\mathcal {D}}^{(3)}\) and tripartite negativity \(\tau _{ABC}\) as a measure of quantum correlations in a model of a three-qubit anisotropic Heisenberg XXZ chain in the presence of an external magnetic field and Dzyaloshinskii–Moriya (DM) interaction. We compare the dynamics of thermal \({\mathcal {D}}^{(3)}\) with that of thermal correlation quantified by \(\tau _{ABC}\) in thermal equilibrium with external magnetic field and DM interaction. Our results show that the magnetic field, the anisotropic coupling coefficient, and the DM interaction parameter are all efficient control parameters for quantum correlation creation and enhancement. Taking the effect of the intrinsic decoherence into account, the dynamics of \({\mathcal {D}}^{(3)}\) and the tripartite negativity \(\tau _{ABC}\) are strongly affected by the input configuration of initial states. We find that the tripartite quantum correlations dynamics for the initial GHZ-type states are only related to the external magnetic field parameter. Conversely, for the initial W-type states, the tripartite quantum correlations dynamics is independent of the external magnetic field parameter but depended on the rest parameters of the system. Furthermore, the results also show that the tripartite quantum correlations quantified by \({\mathcal {D}}^{(3)}\) exhibit more robust against the intrinsic decoherence than that of tripartite negativity \(\tau _{ABC}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang, Y., Zhang, X., Ma, X.: Stream privacy amplification for quantum cryptography. PRX Quantum 3, 020353 (2022)

    Article  ADS  Google Scholar 

  2. Qiu, X.Y., Chen, L.: Quantum cost of dense coding and teleportation. Phys. Rev. A 105, 062451 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brody, J., Guzman, G.: Calculating spin correlations with a quantum computer. Am. J. Phys. 89, 35 (2021)

    Article  ADS  Google Scholar 

  4. Mahdian, M., Yeganeh, H.D.: Toward a quantum computing algorithm to quantify classical and quantum correlation of system states. Quantum Inf. Process. 20, 393 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Deger, A., Wei, T.C.: Geometric entanglement and quantum phase transition in generalized cluster-XY models. Quantum Inf. Process. 18, 326 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Saghafi, Z., Mahdavifar, S., Hosseini Lapasar, E.: Markovian and Non-Markovian dynamics in the one-dimensional transverse-field XY model. J. Stat. Phys. 176, 492 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Liu, B.Q., Shao, B., Li, J.G., et al.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii–Moriya interaction. Phys. Rev. A 83, 052112 (2011)

    Article  ADS  Google Scholar 

  8. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  9. Zad, H.A., Movahhedian, H.: Classical correlation and quantum entanglement in the mixed-spin Ising-XY model with Dzyaloshinskii–Moriya interaction. Int. J. Mod. Phys. B 31, 1750094 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Roy, S., Chanda, T., Das, T., et al.: Phase boundaries in an alternating-field quantum XY model with Dzyaloshinskii–Moriya interaction: sustainable entanglement in dynamics. Phys. Rev. B 99, 064422 (2019)

    Article  ADS  Google Scholar 

  11. Zyczkowski, K., Horodecki, P., Sanpera, A., et al.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jamróz, A.: Local aspects of disentanglement induced by spontaneous emission. J. Phys. A: Math. Gen. 39, 7727 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  14. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  15. Bennett, C.H., et al.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Brunner, N., Cavalcanti, D., Pironio, S., et al.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  17. Ann, K., Jaeger, G.: Generic tripartite Bell nonlocality sudden death under local phase noise. Phys. Lett. A 372, 6853 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ollivier, H., Zurek, W.H.: Quantum discord: a Measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  19. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  20. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  21. Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  22. Benedetti, C., Buscemi, F., Bordone, P., Paris Matteo, G.A.: Dynamics of quantum correlations in colored noise environments. Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

  23. Kuznetsova, E.I., Yurischev, M.A.: Quantum discord in spin systems with dipole–dipole interaction. Quantum Inf. Process. 12, 3587–3605 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Bussandri, D.G., Majtey, A.P., Lamberti, P.W., Osán, T.M.: Generalized approach to quantify correlations in bipartite quantum systems. Quantum Inf. Process. 18, 57 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Paula, I.V., Alejandro, S.: Enhancement of quantum correlations and geometric phase for a driven bipartite quantum system in a structured environment. Phys. Rev. A 103, 032222 (2021)

    Article  MathSciNet  Google Scholar 

  26. Rahman, A.U., Noman, M., Javed, M., Ullah, A., Luo, M.X.: Effects of classical fluctuating environments on decoherence and bipartite quantum correlation dynamics. Laser Phys. 31, 115202 (2021)

    Article  ADS  Google Scholar 

  27. Rulli, C.C., Sarandy, S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  28. Mahdian, M., Yousefjani, R., Salimi, S.: Quantum discord evolution of three-qubit states under noisy channels. Eur. Phys. J. D 66, 133 (2012)

    Article  ADS  Google Scholar 

  29. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

    Article  ADS  Google Scholar 

  30. Behzadi, N., Ahansaz, B.: Thermal tripartite quantum correlations: quantum discord and entanglement perspectives. Eur. Phys. J. D 67, 112 (2013)

    Article  ADS  Google Scholar 

  31. Guo, J.X., Mi, Y.J.: Dynamics of multipartite quantum correlations in the qubit-reservoir system. Eur. Phys. J. D 68, 39 (2014)

    Article  ADS  Google Scholar 

  32. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A. 85, 010301(R) (2012)

    Article  ADS  Google Scholar 

  33. Zhao, L., Hu, X., Yue, R.H., Fan, H.: Genuine correlations of tripartite system. Quantum Inf. Process. 12, 2371 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Dey, A., Pramanik, T., Majumdar, A.S.: Fine-grained uncertainty relation and biased nonlocal games in bipartite and tripartite systems. Phys. Rev. A 87, 012120 (2013)

    Article  ADS  Google Scholar 

  35. Lima, D., Rigolin, G.: Asymptotic security analysis of teleportation based quantum cryptography. Quantum Inf. Process. 19, 201 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Czachor, M.: Arithmetic loophole in Bell’s theorem: an overlooked threat to entangled-state quantum cryptography. Acta Phys. Pol. A 139, 70 (2021)

    Article  ADS  Google Scholar 

  37. Pseiner, J., Achatz, L., Bulla, L., Bohmann, M., Ursin, R.: Experimental wavelength-multiplexed entanglement-based quantum cryptography. Quant. Sci. Technol. 6, 035013 (2021)

    Article  ADS  Google Scholar 

  38. Sabļ, C., Garcļa-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435–442 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  39. Braga, H.C., Rulli, C.C., et al.: Monongamy of quantum discord by multipartite correlations. Phys. Rev. A 86, 062106 (2012)

    Article  ADS  Google Scholar 

  40. Moya-Cessa, H., Bu\(\breve{z}\)ek, V., Kim, M.S., Knight, P.L.: Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 48, 3900 (1993)

Download references

Acknowledgements

This work was supported by the Scientific Research Project of Hunan Province Department of Education (Grant No. 19B060) and the Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ30757 and 2020JJ4146). Y N Guo was supported by the Program of Changsha Excellent Young Talents (kq2009076, kq2106071, kq1905005, and kq2206052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-neng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section, we give the explicit expressions of the \(\tau _{ABC}(\rho )\) and \({\mathcal {D}}^{3}(\rho )\) for thermal equilibrium state given by Eq. (13). It is easy to conclude that the eigenvalues of the partial transpose of the total density matrix given by Eq. (13) have the same form. Hence, the analytical form of \(\tau _{ABC}(\rho )\) reduces to

$$\begin{aligned} \tau _{ABC}[\rho (T)]=\Sigma _{i=1}^{8}|\lambda _{i}|-1 \end{aligned}$$
(A1)

where \(\lambda _{1}=\frac{\Sigma _{i=2,4,6}m_{i}}{3M}\), \(\lambda _{2}=\frac{\Sigma _{i=1,3,5}m_{i}}{3M}\), \(\lambda _{i}(i=3,4,5)\), and \(\lambda _{j}(j=6,7,8)\) are the root of

$$\begin{aligned}{} & {} \frac{1}{27}\left[ 3M\alpha \alpha ^{*}e^{-\frac{E_{7}}{KT}}-3M (\Sigma _{i=2,4,6}m_{i})^2 e^{-\frac{E_{7}}{KT}}\right. \nonumber \\{} & {} \quad \left. +2M^3\beta \beta ^{*}(\Sigma _{i=2,4,6}m_{i})-M^3(\alpha \beta ^2+\alpha ^{*}\beta ^{*2})\right] \nonumber \\{} & {} \quad +\frac{1}{9}\left[ 6(\Sigma _{i=2,4,6}m_{i}) e^{-\frac{E_{7}}{KT}}+M^2(\Sigma _{i=2,4,6}m_{i})^2\right. \nonumber \\{} & {} \quad \left. -M^2(\alpha \alpha ^{*}+2\beta \beta ^{*})\right] \sharp 1-\frac{1}{3M}\left[ 3e^{\frac{-E_{7}}{KT}}+2M^2(\Sigma _{i=2,4,6}m_{i})\right] \sharp 1^{2}+\sharp 1^{3}, \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} \frac{1}{27}\left[ 3M\beta \beta ^{*}e^{-\frac{E_{8}}{KT}}-3M (\Sigma _{i=1,3,4}m_{i})^2 e^{-\frac{E_{8}}{KT}}\right. \nonumber \\{} & {} \quad \left. +2M^3\alpha \alpha ^{*}(\Sigma _{i=1,3,5}m_{i})-M^3(\beta \alpha ^2+\beta ^{*}\alpha ^{*2})\right] \nonumber \\{} & {} \quad +\frac{1}{9}\left[ 6(\Sigma _{i=1,3,5}m_{i}) e^{-\frac{E_{8}}{KT}}+M^2(\Sigma _{i=1,3,5}m_{i})^2\right. \nonumber \\{} & {} \left. \quad -M^2(2\alpha \alpha ^{*}+\beta \beta ^{*})\right] \sharp 1-\frac{1}{3M}\left[ 3e^{\frac{-E_{8}}{KT}}+2M^2(\Sigma _{i=1,3,5}m_{i})\right] \sharp 1^{2}+\sharp 1^{3}, \end{aligned}$$
(A3)

respectively. On the other hand, according to Eq. (9), the expression of \({\mathcal {D}}^{3}(\rho )\) is calculated as follows:

$$\begin{aligned} {\mathcal {D}}^{3}[\rho (T)]= & {} \frac{M}{3}\left( \Sigma _{i=2,4,6}m_{i}+\alpha +\alpha ^{*}\right) \log _{2}\left[ \frac{M}{3}(\Sigma _{i=2,4,6}m_{i}+\alpha +\alpha ^{*})\right] \nonumber \\{} & {} -M(\Sigma _{i=2,4,6}m_{i})\log _{2}\left[ \frac{\Sigma _{i=2,4,6}m_{i}}{3}\right] \nonumber \\{} & {} +\frac{M}{3}(\Sigma _{i=1,3,5}m_{i}+\beta +\beta ^{*})\log _{2}\left[ \frac{M}{3}(\Sigma _{i=1,3,5}m_{i}+\beta +\beta ^{*})\right] \nonumber \\{} & {} -M(\Sigma _{i=1,3,5}m_{i})\log _{2}\left[ \frac{\Sigma _{i=1,3,5}m_{i}}{3}\right] \nonumber \\{} & {} +\frac{1}{6}[M(2\Sigma _{i=2,4,6}m_{i}-\alpha -\alpha ^{*})\nonumber \\{} & {} -i\sqrt{3}M(\alpha -\alpha ^{*})]\log _{2}\frac{1}{6}\left[ M(2\Sigma _{i=2,4,6}m_{i}-\alpha -\alpha ^{*})-i\sqrt{3}M(\alpha -\alpha ^{*})\right] \nonumber \\{} & {} +\frac{1}{6}\left[ M\left( 2\Sigma _{i=2,4,6}m_{i}-\alpha -\alpha ^{*}\right) \right. \nonumber \\{} & {} \left. +i\sqrt{3}M(\alpha -\alpha ^{*})\right] \log _{2}\frac{1}{6}\left[ M(2\Sigma _{i=2,4,6}m_{i}-\alpha -\alpha ^{*})+i\sqrt{3}M(\alpha -\alpha ^{*})\right] \nonumber \\{} & {} +\frac{1}{6}[M(2\Sigma _{i=1,3,5}m_{i}-\beta -\beta ^{*})\nonumber \\{} & {} -i\sqrt{3}M(\beta -\beta ^{*})]\log _{2}\frac{1}{6}\left[ M(2\Sigma _{i=1,3,5}m_{i}-\beta -\beta ^{*})-i\sqrt{3}M(\beta -\beta ^{*})\right] \nonumber \\{} & {} +\frac{1}{6}\left[ M(2\Sigma _{i=1,3,5}m_{i}-\beta -\beta ^{*})\right. \nonumber \\{} & {} \left. +i\sqrt{3}M(\beta -\beta ^{*})\right] \log _{2}\frac{1}{6}\left[ M(2\Sigma _{i=1,3,5}m_{i}\right. \nonumber \\{} & {} \left. -\beta -\beta ^{*})+i\sqrt{3}M(\beta -\beta ^{*})\right] \end{aligned}$$
(A4)

Following, we give the explicit time-evolved density matrix of the system when the initial state is prepared in W-type state. According to Eq. (17), the time-evolved density matrix is given

$$\begin{aligned} \rho _{W}(t)= \frac{1}{8}\left( \begin{array}{ c c c c c c c c cl r } 1-r &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} \mu (t) &{} \Delta (t) &{} 0 &{} \delta (t) &{} 0 &{}0 &{}0\\ 0 &{} \Delta ^{*}(t) &{} \Xi (t) &{} 0 &{} \nu (t) &{} 0 &{}0 &{}0\\ 0 &{} 0 &{} 0 &{} 1-r &{} 0 &{}0 &{}0 &{}0\\ 0 &{} \delta ^{*}(t) &{} \nu ^{*}(t) &{} 0 &{} \kappa (t) &{} 0 &{}0 &{}0\\ 0 &{} 0 &{}0 &{} 0 &{} 0 &{} 1-r &{}0 &{}0\\ 0 &{} 0 &{}0 &{}0 &{} 0 &{} 0 &{}1-r &{}0\\ 0 &{} 0 &{}0 &{} 0 &{} 0 &{} 0 &{}0 &{}1-r\\ \end{array} \right) , \end{aligned}$$
(A5)

where

$$\begin{aligned} \mu (t)= & {} \frac{1}{72} \{\left( 12-8 \sqrt{2}\right) \cos \left( 2 \sqrt{3} D_{z}t\right) e^{-6 D_{z}^2 \text { t }\Gamma }\nonumber \\{} & {} +\,4 \sqrt{2}\cos \left[ \left( 3 J-\sqrt{3} D_{z}\right) t\right] e^{-\frac{1}{2} \text { t }\Gamma } \left( 3 J-\sqrt{3} D_{z}\right) ^2\nonumber \\{} & {} +\,4 \sqrt{2} \cos \left[ \left( \sqrt{3} D_{z}+3 J\right) t\right] e^{-\frac{1}{2} \text { t }\Gamma \left( \sqrt{3} D_{z}+3 J\right) ^2}+15 r+9\} \end{aligned}$$
(A6)
$$\begin{aligned} \Xi (t)= & {} \frac{1}{72} \{\left( 12-8 \sqrt{2}\right) r e^{-6 D_{z}^2 \text { t }\Gamma } \sin \left( 2 \sqrt{3} D_{z}t-\frac{\pi }{6}\right) \nonumber \\{} & {} -\,4 \sqrt{2} r e^{-\frac{1}{2} \text { t }\Gamma \left( \sqrt{3} D_{z}+3 J\right) ^2} \sin \left[ t \left( \sqrt{3} D_{z}+3 J\right) +\frac{\pi }{6}\right] \nonumber \\{} & {} +\,4 \sqrt{2} r e^{-\frac{1}{2} \text { t }\Gamma \left( 3 J-\sqrt{3} D_{z}\right) ^2} \sin \left[ t \left( 3 J-\sqrt{3} D_{z}\right) -\frac{\pi }{6}\right] +15 r+9\} \end{aligned}$$
(A7)
$$\begin{aligned} \kappa (t)= & {} \frac{1}{72} \{\left( 8 \sqrt{2}-12\right) r e^{-6 D_{z}^2 \text { t }\Gamma } \sin \left( 2 \sqrt{3} D_{z} t+\frac{\pi }{6}\right) \nonumber \\{} & {} -\,4 \sqrt{2} r e^{-\frac{1}{2} \text { t }\Gamma \left( 3 J-\sqrt{3} D_{z}\right) ^2} \sin \left[ t \left( 3 J-\sqrt{3} D_{z}\right) +\frac{\pi }{6}\right] \nonumber \\{} & {} +\,4 \sqrt{2} r e^{-\frac{1}{2} \text { t }\Gamma \left( \sqrt{3} D_{z}+3 J\right) ^2} \sin \left[ t \left( \sqrt{3} D_{z}+3 J\right) -\frac{\pi }{6}\right] +15 r+9\} \end{aligned}$$
(A8)
$$\begin{aligned} \Delta (t)= & {} \frac{1}{36} r \{\left( 4 \sqrt{2}-6\right) e^{-6 D_{z}^2 \text { t }\Gamma } \sin \left( 2 \sqrt{3} D_{z}t+\frac{\pi }{6}\right) \nonumber \\{} & {} +\,i \sqrt{2} e^{-\frac{1}{2} \text { t }\Gamma \left( \sqrt{3} D_{z}+3 J\right) ^2} \left[ 2 \sin \left( \sqrt{3} D_{z}+3 J\right) t-\sqrt{3} e^{ -i\left( \sqrt{3} D_{z}+3 J\right) t}\right] \nonumber \\{} & {} +\,i \sqrt{2} e^{-\frac{1}{2} \text { t }\Gamma \left( 3 J-\sqrt{3} D_{z}\right) ^2} \left[ 2 \sin \left( 3 J-\sqrt{3} D_{z}\right) t\right. \nonumber \\{} & {} \left. +\,\sqrt{3} e^{ -i\left( 3 J-\sqrt{3} D_{z}\right) t}\right] +6 \sqrt{2}+3\} \end{aligned}$$
(A9)
$$\begin{aligned} \delta (t)= & {} \frac{1}{36} r \{ \left( 6-4 \sqrt{2}\right) e^{-6 D_{z}^2 \text { t }\Gamma } \sin \left( 2 \sqrt{3} D_{z} t-\frac{\pi }{6}\right) \nonumber \\{} & {} +\,\sqrt{2} \left( \sqrt{3} i-e^{-\frac{1}{2} \text { t }\Gamma \left( 3 J-\sqrt{3} D_{z}\right) ^2}\right) \sin \left[ t \left( 3 J-\sqrt{3} D_{z}\right) -\frac{\pi }{6}\right] \nonumber \\{} & {} +\,\sqrt{2} \left( i \sqrt{3}+e^{-\frac{1}{2} \text { t }\Gamma \left( \sqrt{3} D_{z}+3 J \right) ^2}\right) \sin \left[ t \left( \sqrt{3} D_{z}+3 J\right) +\frac{\pi }{6}\right] \nonumber \\{} & {} +\,6 \sqrt{2}+3\} \end{aligned}$$
(A10)
$$\begin{aligned} \nu (t)= & {} \frac{1}{36} r \{\left( 6-4 \sqrt{2}\right) e^{-6 D_{z}^2 \text { t }\Gamma } \cos \left( 2 \sqrt{3} D_{z} t\right) \nonumber \\{} & {} -\,\sqrt{2}\left( 1+i \sqrt{3}\right) e^{-\frac{1}{2} \text { t }\Gamma \left( 3 J-\sqrt{3} D_{z}\right) ^2} \cos \left[ t \left( 3 J-\sqrt{3} D_{z}\right) \right] \nonumber \\{} & {} -\,\sqrt{2}\left( 1-\sqrt{3} i\right) e^{-\frac{1}{2} \text { t }\Gamma \left( \sqrt{3}D_{z}+3 J\right) ^2} \cos \left[ t \left( \sqrt{3} D_{z}+3 J\right) \right] \nonumber \\{} & {} +\,6 \sqrt{2}+3\} \end{aligned}$$
(A11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Ql., Guo, Yn., Chen, Xj. et al. Tripartite quantum correlations in XXZ Heisenberg spin chain with Dzyaloshinskii–Moriya interaction. Quantum Inf Process 22, 191 (2023). https://doi.org/10.1007/s11128-023-03934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03934-1

Keywords

Navigation