Skip to main content
Log in

Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We theoretically investigate the normal mode splitting (NMS) in the displacement spectrum of a moving membrane and the output cavity field squeezing spectrum in an optomechanical system with a degenerate optical parametric amplifier (OPA) placed inside the cavity. In our proposed system, the cavity mode is coupled to this moving membrane (which acts as mechanical mode) through both the linear optomechanical coupling and the quadratic optomechanical coupling. We have shown that the nonlinear OPA gain G and the phase angle \(\theta \) can effectively alter this NMS behavior in the displacement spectrum of the mechanical mode as well as output cavity field spectrum qualitatively as well as quantitatively. Furthermore, we can also enhance the squeezing bandwidth of the output cavity quadrature through both the parameters of OPA even at higher environment temperature T or in other words a significant mechanical thermal noise. Our study provides an efficient method to control the NMS behavior and the squeezing properties in such kind of generalized optomechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data used during this study are available within the article.

References

  1. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: backaction at the mesoscale. Science 321, 1172 (2008)

    ADS  Google Scholar 

  2. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  3. Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)

    Google Scholar 

  4. Xiong, H., Si, L., Lv, X., Yang, X., Wu, Y.: Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron. 58, 1 (2015)

    Google Scholar 

  5. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63 (2012)

    ADS  Google Scholar 

  6. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    ADS  Google Scholar 

  7. Peng, J.X., Chen, Z., Yuan, Q.Z., Feng, X.L.: Optomechanically induced transparency in a Laguerre–Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields. Phys. Rev. A 99, 043817 (2019)

    ADS  Google Scholar 

  8. Sohail, A., Ahmed, R., Shui, Y.C., Munir, T.: Tunable optical response of an optomechanical system with two mechanically driven resonators. Phys. Scr. 95, 045105 (2020)

    ADS  Google Scholar 

  9. Singh, S.K., Asjad, M., Ooi, C.H.: Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf. Process. 21(2), 1 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Asjad, M.: Electromagnetically-induced transparency in optomechanical systems with Bose-Einstein condensate. J. Russ. Laser Res. 34, 159 (2013)

    Google Scholar 

  11. Asjad, M.: Optomechanically dark state in hybrid BEC-optomechanical systems. J. Russ. Laser Res. 34, 278 (2013)

    Google Scholar 

  12. Sohail, A., Ahmed, R.: Switchable and enhanced absorption via qubit-mechanical nonlinear interaction in a hybrid optomechanical system. Int. J. Theor. Phys. 60(3), 739 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Yusoff, F.N., Zulkifli, M.A., Ali, N., Singh, S.K., Abdullah, N., AhmadHambali, N.A.M., Edet, C.O.: Tunable transparency and group delay in cavity optomechanical systems with degenerate fermi gas. Photonics 10, 279 (2023)

    Google Scholar 

  14. Sohail, A., Arif, R., Akhtar, N., Jia-Xin Peng, Z., Xianlong, G., Gu, Z.D.: A rotational-cavity optomechanical system with two revolving cavity mirrors: optical response and fast-slow light mechanism. arXiv:2301.06979

  15. Kong, C., Bin, S.W., Wang, B., Liu, Z.X., Xiong, H., Wu, Y.: High-order sideband generation in a two-cavity optomechanical system with modulated photon-hopping interaction. Laser Phys. Lett. 15(11), 115401 (2018)

    ADS  Google Scholar 

  16. Liu, Z.X., Xiong, H.: Highly sensitive charge sensor based on atom-assisted high-order sideband generation in a hybrid optomechanical system. Sensors 18(11), 3833 (2018)

    MathSciNet  ADS  Google Scholar 

  17. Sohail, A., Rana, M., Ikram, S., Munir, T., Hussain, T., Ahmed, R., Yu, C.S.: Enhancement of mechanical entanglement in hybrid optomechanical system. Quant. Inf. Proc. 19(10), 18 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Singh, S.K., Peng, J.X., Asjad, M., Mazaheri, M.: Entanglement and coherence in a hybrid Laguerre gaussian rotating cavity optomechanical system with two-level atoms. J. Phys. B At. Mol. Opt. Phys. 54(21), 215502 (2021)

    ADS  Google Scholar 

  19. Asjad, M., Shahzad, M.A., Saif, F.: Quantum degenerate Fermi gas in optomechanics. Eur. Phys. J. D 67, 1 (2013)

    Google Scholar 

  20. Sohail, A., Ahmed, R., Yu, C.S., Munir, T.: Enhanced entanglement induced by coulomb interaction in coupled optomechanical systems. Phys. Scr. 95(3), 035108 (2020)

    ADS  Google Scholar 

  21. Teklu, B., Byrnes, T., Khan, F.: Cavity-induced mirror-mirror entanglement in a single-atom Raman laser. Phys. Rev. A 97, 023829 (2018)

    ADS  Google Scholar 

  22. Sohail, A., Abbas, Z., Ahmed, R., Shahzad, A., Akhtar, N., Peng, J.X.: Enhanced entanglement and controlling quantum steering in a Laguerre–Gaussian cavity optomechanical system with two rotating mirrors. arXiv:2303.06685v1

  23. Huang, S., Agarwal, G.S.: Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95(2), 023844 (2017)

    ADS  Google Scholar 

  24. Mehmood, A., Qamar, S., Qamar, S.: Effects of laser phase fluctuation on force sensing for a free particle in a dissipative optomechanical system. Phys. Rev. A 98(5), 053841 (2018)

    ADS  Google Scholar 

  25. Motazedifard, A., Bemani, F., Naderi, M., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18(7), 073040 (2016)

    ADS  Google Scholar 

  26. Collett, M.J., Walls, D.F.: Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32(5), 2887 (1985)

    ADS  Google Scholar 

  27. Kundu, A., Singh, S.K.: Heisenberg–Langevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Wang, Q.: Precision temperature measurement with optomechanically induced transparency in an optomechanical system. Laser Phys. 28(7), 075201 (2018)

    ADS  Google Scholar 

  29. Huang, J.S., Wang, J.W., Wang, Y., Xu, Z.H., Zhong, Y.W.: Single photon routing in a multi-t-shaped waveguide. J. Phys. B At. Mol. Opt. Phys. 52(1), 015502 (2018)

    ADS  Google Scholar 

  30. Amazioug, M., Daoud, M., Singh, S. K., Asjad, M.: Strong photon antibunching effect in a double cavity optomechanical system with intracavity squeezed light. arXiv:2209.07401

  31. Kumar, T., Bhattacherjee, A.B.: Dynamics of a movable micromirror in a nonlinear optical cavity. Phys. Rev. A 81(1), 013835 (2010)

    ADS  Google Scholar 

  32. Huang, S., Agarwal, G. S.: Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity. Phys. Rev. A 80(3), 033807 (2009)

  33. Asjad, M.: Cavity optomechanics with a Bose-Einstein condensate: normal mode splitting. J. Mod. Opt. 59, 917 (2012)

    ADS  Google Scholar 

  34. Asjad, M., Saif, F.: Normal mode splitting in hybrid BEC-optomechanical system. Optik 125, 5455 (2014)

    ADS  Google Scholar 

  35. Dobrindt, J.M., Wilson-Rae, I., Kippenberg, T.J.: Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    ADS  Google Scholar 

  36. Sete, E.A., Eleuch, H.: Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev. A 85, 043824 (2012)

    ADS  Google Scholar 

  37. Mancini, S., Tombesi, P.: Quantum noise reduction by radiation pressure. Phys. Rev. A 49(5), 4055 (1994)

    ADS  Google Scholar 

  38. Fabre, C., Pinard, M., Bourzeix, S., Heidmann, A., Giacobino, E., Reynaud, S.: Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337 (1994)

    ADS  Google Scholar 

  39. He, Q., Badshah, F., Basit, A., Guo, P., Zhang, X., Zhou, Z., Li, L.: Normal-mode splitting and ponderomotive squeezing in a nonlinear optomechanical system assisted by an atomic ensemble. J. Opt. Soc. Am. B 37, 911 (2020)

    ADS  Google Scholar 

  40. Nejad, A.A., Askari, H.R., Baghshahi, H.R.: Normal mode splitting in an optomechanical system: effects of Coulomb and parametric interactions. J. Opt. Soc. Am. B 35, 2237 (2018)

    ADS  Google Scholar 

  41. Shahidani, S., Naderi, M.H., Soltanolkotabi, M.: Normal-mode splitting and output field squeezing in a Kerr-down conversion optomechanical system. J. Mod. Opt. 62, 124 (2015)

    ADS  Google Scholar 

  42. Peano, V., Schwefel, H.G.L., Marquardt, C., Marquardt, F.: Intracavity squeezing can enhance quantum-limited optomechanical position detection through amplification. Phys. Rev. Lett. 115, 243603 (2015)

    ADS  Google Scholar 

  43. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    ADS  Google Scholar 

  44. Sankey, J.C., Yang, C., Zwickl, B.M., Jayich, A.M., Harris, J.G.E.: Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6, 707 (2010)

    Google Scholar 

  45. Jayich, A.M., Sankey, J.C., Zwickl, B.M., Yang, C., Thompson, J.D., Girvin, S.M., Clerk, A.A., Marquardt, F., Harris, J.G.E.: Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (2008)

    ADS  Google Scholar 

  46. Paraiso, T.K., Kalaee, M., Zang, L., Pfeifer, H., Marquardt, F., Painter, O.: Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X 5, 041024 (2015)

    Google Scholar 

  47. Murch, K.W., Moore, K.L., Gupta, S., Stamper-Kurn, D.M.: Observation of quantum-measurement backaction with an ultracold atomic gas. Nat. Phys. 4, 561 (2008)

    Google Scholar 

  48. Purdy, T.P., Brooks, D.W.C., Botter, T., Brahms, N., Ma, Z.Y., Stamper-Kurn, D.M.: Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 105, 133602 (2010)

    ADS  Google Scholar 

  49. Brawley, G.A., Vanner, M.R., Larsen, P.E., Schmid, S., Boisen, A., Bowen, W.P.: Nonlinear optomechanical measurement of mechanical motion. Nat. Commun. 7, 10988 (2016)

    ADS  Google Scholar 

  50. Kundu, A., Jin, C., Peng, J.X.: Optical response of a dual membrane active/passive optomechanical cavity. Ann. Phys. 429, 168465 (2021)

    MathSciNet  Google Scholar 

  51. Clerk, A.A., Marquardt, F., Harris, J.G.E.: Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104(21), 213603 (2010)

    ADS  Google Scholar 

  52. Singh, S.K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390 (2014)

    ADS  Google Scholar 

  53. Singh, S.K., Muniandy, S.V.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Int. J. Theor. Phys. 55, 287 (2016)

    MATH  Google Scholar 

  54. Asjad, M., Agarwal, G.S., Kim, M.S., Tombesi, P., Di Giuseppe, G., Vitali, D.: Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Phys. Rev. A 89(2), 023849 (2014)

    ADS  Google Scholar 

  55. Kundu, A., Singh, S.K.: Heisenberg–Langevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Huang, S., Chen, A.: Fano resonance and amplification in a quadratically coupled optomechanical system with a Kerr medium. Phys. Rev. A 101(2), 023841 (2020)

    MathSciNet  ADS  Google Scholar 

  57. Abdi, M., Degenfeld-Schonburg, P., Sameti, M., Navarrete-Benlloch, C., Hartmann, M.J.: Dissipative optomechanical preparation of macroscopic quantum superposition states. Phys. Rev. Lett. 116(23), 233604 (2016)

    ADS  Google Scholar 

  58. He, Q., Badshah, F., Li, L., Wang, L., Su, S.L., Liang, E.: Transparency, stokes and anti-stokes processes in a multimode quadratic coupling system with parametric amplifier. Ann. Phys. 533, 2000612 (2021)

    MathSciNet  Google Scholar 

  59. Zhang, L., Song, Z.: Modification on static responses of a nano-oscillator by quadratic optomechanical couplings. Sci. China Phys. Mech. Astron. 57(5), 880 (2014)

    ADS  Google Scholar 

  60. Singh, S.K., Parvez, M., Abbas, T., Peng, J.X., Mazaheri, M., Asjad, M.: Tunable optical response and fast (slow) light in optomechanical system with phonon pump. Phys. Lett. A 442, 128181 (2022)

    MATH  Google Scholar 

  61. Xuereb, A., Paternostro, M.: Selectable linear or quadratic coupling in an optomechanical system. Phys. Rev. A 87(2), 023830 (2013)

    ADS  Google Scholar 

  62. Zhang, X.Y., Zhou, Y.H., Guo, Y.Q., Yi, X.X.: Optomechanically induced transparency in optomechanics with both linear and quadratic coupling. Phys. Rev. A 98(5), 053802 (2018)

    ADS  Google Scholar 

  63. He, Q., Badshah, F., Alharbi, T., Li, L., Yang, L.: Normal-mode splitting in a linear and quadratic optomechanical system with an ensemble of two-level atoms. J. Opt. Soc. Am. B 37, 148 (2020)

    ADS  Google Scholar 

  64. Chao, S.L., Yang, Z., Zhao, C.S., Peng, R., Zhou, L.: Force sensing in a dual mode optomechanical system with linear and quadratic coupling and modulated photon hopping. Opt. Lett. 46(13), 3075 (2021)

    ADS  Google Scholar 

  65. Loudon, R., Knight, P.L.: Squeezed light. J. Mod. Opt. 34, 709 (1987)

    MathSciNet  MATH  ADS  Google Scholar 

  66. Grunwald, P., Singh, S.K., Vogel, W.: Raman-assisted Rabi resonances in two-mode cavity QED. Phys. Rev. A 83, 063806 (2011)

    ADS  Google Scholar 

  67. Singh, S.K.: Quantum dynamics and nonclassical photon statistics of coherently driven Raman transition in bimodal cavity. J. Mod. Opt. 66, 562 (2019)

    ADS  Google Scholar 

  68. Singh, S.K.: Optical feedback induced dynamics and nonclassical photon statistics of semiconductor microcavity laser. Appl. Phys. B 127, 90 (2021)

    ADS  Google Scholar 

  69. Wollman, E.E., Lei, C.U., Weinstein, A.J., Suh, J., Kronwald, A., Marquardt, F., Clerk, A.A., Schwab, K.C.: Quantum squeezing of motion in a mechanical resonator. Science 349, 952 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Sohail.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We can use Eq. 19 to find the amplitude and phase quadratures, \(\delta {\hat{x}_{\textrm{out}}}\) and \(\delta {\hat{y}_{\textrm{out}}}\) given as

$$\begin{aligned} \delta {\hat{x}_{\textrm{out}}}= & {} \delta {\hat{c}_{\textrm{out}}}+\delta {\hat{c}_{\textrm{out}}^{\dagger }}\nonumber ,\\ \delta {\hat{y}_{\textrm{out}}}= & {} i[\delta {\hat{c}_{\textrm{out}}^{\dagger }}-\delta {\hat{c}_{\textrm{out}}}]. \end{aligned}$$
(A-1)

The spectral density of the quadratures of the output field in the frequency domain, \(S_{x,\textrm{out}}(\omega )\) and \(S_{y,\textrm{out}}(\omega )\) can be found using the following equations:

$$\begin{aligned}{} & {} \left\langle \delta {\hat{x}_{\textrm{out}}^{\dagger }}(\omega ')\delta {\hat{x}_{\textrm{out}}}(\omega )\right\rangle =2 \pi S_{x,\textrm{out}}(\omega )\delta (\omega '+\omega ),\nonumber \\{} & {} \left\langle \delta {\hat{y}_{\textrm{out}}^{\dagger }}(\omega ')\delta {\hat{y}_{\textrm{out}}}(\omega )\right\rangle =2 \pi S_{y,\textrm{out}}(\omega )\delta (\omega '+\omega ). \end{aligned}$$
(A-2)

Using Eqs. 1720, we get

(A-3)

Here we have taken \(D_{g}(\omega )=[D(\omega )]^{*}\), \(D_{t}(\omega )=D(-\omega )\), \(D_{tg}(\omega )=[D_{t}(\omega )]^{*}\), and \(E_{jg}(\omega )=[E_{j}(\omega )]^{*}\), \(E_{jt}(\omega )=E_{j}(-\omega )\), \(E_{jtg}(\omega )=[E_{jt}(\omega )]^{*}\), (\(j=\hat{c},\hat{c}^{\dagger },\xi \)).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Mazaheri, M., Peng, JX. et al. Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Inf Process 22, 198 (2023). https://doi.org/10.1007/s11128-023-03947-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03947-w

Keywords

Navigation