Skip to main content
Log in

Source-device-independent randomness expansion using quantum random access codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we discuss quantum randomness expansion using the unreliable source device and the honest measure device consisting of mutually unbiased bases in 3-dimensional Hilbert space. Then, we obtain the relationship between 3-dimensional quantum witness and random number generation rate. Furthermore, the analytic expression of the relationship is given, which is of great significance for security analysis and practical application. This work can be considered a preliminary attempt for semi-device-independent quantum random number extension protocols in 3-dimensional Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used or analyzed in this study are available to all and can be requested from the corresponding author if the reader is interested.

References

  1. Mannalath, V., Mishra, S., Pathak, A.: A comprehensive review of quantum random number generators: concepts, classification and the origin of randomness (2022). arXiv preprint arXiv:2203.00261

  2. Kollmitzer, C., Petscharnig, S., Suda, M., Mehic, M.: Quantum Random Number Generation, Quantum Science and Technology, pp. 11–34. Springer, Cham (2020)

    MATH  Google Scholar 

  3. Pironio, S., Acin, A., Massar, S., Boyer de La Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bells theorem. Nature 464(7291), 1021 (2010)

    Article  ADS  Google Scholar 

  4. Gallego, R., Brunner, N., Hadley, C., Acin, A.: Device independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105, 230501 (2010)

    Article  ADS  Google Scholar 

  5. Colbeck, R., Renner, R.: Free randomness can be amplified. Nat. Phys. 8, 450 (2012)

    Article  Google Scholar 

  6. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (1999)

  7. Tavakoli, A., Hameedi, A., Marques, B., Bourennane, M.: Quantum random access codes using single d-Level systems. Phys. Rev. Lett. 114, 170502 (2015)

    Article  ADS  Google Scholar 

  8. Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)

    Article  MATH  Google Scholar 

  9. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)

    Article  ADS  Google Scholar 

  10. Brassard, G.: Brief History of Quantum Cryptography: A Personal Perspective. arXiv:quant-ph/0604072v1 (2005)

  11. Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302(R) (2011)

    Article  ADS  Google Scholar 

  12. Li, H.W., Yin, Z.Q., Wu, Y.C., Zou, X.B., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)

    Article  ADS  Google Scholar 

  13. Li, H.W., Pawłowski, M., Yin, Z.Q., Guo, G.C., Han, Z.F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)

    Article  ADS  Google Scholar 

  14. Mannalath, V., Pathak, A.: Bounds on semi-device-independent quantum random number expansion capabilities. Phys. Rev. A 105(2), 022435 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhou, Y.Q., Li, H.W., Wang, Y.K., Li, D.D., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources. Phys. Rev. A 92, 022331 (2015)

    Article  ADS  Google Scholar 

  16. Zhou, Y.Q., Wang, Y.K., Li, D.D., Li, X.H., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources using 3\(\rightarrow \) 1 quantum random access code. Phys. Rev. A 94, 032318 (2016)

    Article  ADS  Google Scholar 

  17. Vaisakh, M., Krishna Patra, R., Janpandit, M., Sen, S., Banik, M., Chaturvedi, A.: Mutually unbiased balanced functions and generalized random access codes. Phys. Rev. A 104(1), 012420 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  18. Nie, Y.Q., Guan, J.Y., Zhou, H.Y., Zhang, Q., Ma, X.F., Zhang, J., Pan, J.W.: Experimental measurement-device-independent quantum random-number generation. Phys. Rev. A 94, 060301(R) (2016)

    Article  ADS  Google Scholar 

  19. Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent ultrafast quantum random number generation. Phys. Rev. L 118, 060503 (2017)

    Article  ADS  Google Scholar 

  20. Cheng, J.L., Qin, J.L., Liang, S.C., Li, J.T., Yan, Z.H., Jia, X.J.: Kunchi Peng Mutually testing source-device-independent quantum random number generator. Photon. Res. 10(3), 03000646 (2022)

    Article  Google Scholar 

  21. Zhou, Y.Q., Dong, Y.Q., Yao, Q.K., Zhang, Z.Y., Li, D., Wang, Q.L.: \(n\rightarrow 1\) quantum random acess codes using single \(3\)-level systems. Quantum Inf. Process. 37, 377 (2021)

    Article  ADS  MATH  Google Scholar 

  22. Nisan, N., Ta-Shma, A.: Extracting randomness: a survey and new constructions. J. Comput. Syst. Sci. 58, 148 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Caves, C.M., Milburn, G.J.: Qutrit entanglement. Opt. Commun. 179, 439 (2000)

    Article  ADS  Google Scholar 

  24. Bolukbai, A.T., Dereli, T.: On the \(SU(3)\) parametrization of qutrits. J. Phys. Conf. Ser. 36, 28–32 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant Nos. 61901218, 62002162, 62172216), Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190407, BK20200442, BK20211180), the Research Fund of State Key Laboratory of Integrated Services Networks (No. ISN23-20), and the Research Fund of Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS202107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qian Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YQ., Yao, QK., Dong, YQ. et al. Source-device-independent randomness expansion using quantum random access codes. Quantum Inf Process 22, 214 (2023). https://doi.org/10.1007/s11128-023-03967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03967-6

Keywords

Navigation