Skip to main content
Log in

Impact of non-orthogonal measurement in Bell detection on continuous-variable measurement-device-independent quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD), whose core is Bell detection, can effectively resist attacks on the detection system. However, in CV-MDI QKD, Charlie is untrusted; the external environment will cause non-ideal Bell detection that will open security loopholes. We give a complete security analysis under non-ideal Bell detection caused by on-orthogonal measurement. The simulation results indicate that compared with no angle error, only 1\(^\circ \) angle error will cause the transmission distance to drop by 7 km. Therefore, our research further improves and perfects the security of CV-MDI QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 81, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shamsul Shaari, J., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012–1236 (2020)

    Article  Google Scholar 

  4. Xu, F., Ma, X., Zhang, Q., Lo, H., Pan, J.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  5. Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87, 022308 (2013)

    Article  ADS  Google Scholar 

  6. Braunstein, S.L., Loock, P.V.: Quantum information with continuous variables, Gaussian quantum information. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MATH  Google Scholar 

  7. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  8. Pirandola, S.: Composable security for continuous variable quantum key distribution: trust levels and practical key rates in wired and wireless networks. Phys. Rev. Res. 3, 043014 (2021)

    Article  Google Scholar 

  9. Chen, Z., Wang, X., Yu, S., Li, Z., Guo, H.: Continuous-mode quantum key distribution with digital signal processing. NPJ Quantum Inf. 9, 1 (2023)

    Article  Google Scholar 

  10. Lin, J., Upadhyaya, T., Lütkenhaus, N.: Asymptotic security analysis of discrete-modulated continuous-variable quantum key distribution. Phys. Rev. X 9, 041064 (2019)

    Google Scholar 

  11. Ghorai, S., Grangier, P., Diamanti, E., Leverrier, A.: Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X 9(2), 021059 (2019)

    Google Scholar 

  12. Huang, Y., Shen, T., Wang, X., Chen, Z., Xu, B., Yu, S., Guo, H.: Realizing a downstream-access network using continuous-variable quantum key distribution. Phys. Rev. Appl. 16, 064051 (2021)

    Article  ADS  Google Scholar 

  13. Pan, Y., Huang, W., Shao, Y., Pi, Y., Li, Y., Liu, B., Wang, H., Xu, B.: Experimental demonstration of high-rate discrete-modulated continuous. Opt. Lett. 47, 3307–3310 (2022)

    Article  ADS  Google Scholar 

  14. Wang, X., Chen, Z., Li, Z., Qi, D., Yu, S., Guo, H.: Experimental upstream transmission of continuous variable quantum key distribution access network (2023). https://doi.org/10.1364/OL.487582

  15. Chin, H.M., Jain, N., Andersen, U.L., Zibar, D., Gehring, T.: Digital synchronization for continuous-variable quantum key distribution. Quantum Sci. Technol. 7, 045006 (2022)

    Article  ADS  Google Scholar 

  16. Wang, X., Zhang, Y., Li, Z., Xu, B., Yu, S., Guo, H.: Efficient rate-adaptive reconciliation for CV-QKD protocol. Quantum Inf. Comput. 17, 1123–1134 (2017)

    MathSciNet  Google Scholar 

  17. Wang, X., Zhang, Y., Yu, S., Guo, H.: High efficiency postprocessing for continuous-variable quantum key distribution: using all raw keys for parameter estimation and key extraction. Quantum Inf. Process. 18, 9 (2019)

    Article  ADS  MATH  Google Scholar 

  18. Wang, X., Wang, H., Zhou, C., Chen, Z., Yu, S., Guo, H.: Continuous-variable quantum key distribution with low-complexity information reconciliation. Opt. Express 30, 30455–30465 (2022)

    Article  Google Scholar 

  19. Huang, J., Weedbrook, C., Yin, Z., Wang, S., Li, H., Chen, W., Guo, G., Han, Z.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 87, 062329 (2013)

    Article  ADS  Google Scholar 

  20. Ma, X., Sun, S., Jiang, M., Liang, L.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87, 052309 (2013)

    Article  ADS  Google Scholar 

  21. Häseler, H., Moroder, T., Lütkenhaus, N.: Testing quantum devices: Practical entanglement verification in bipartite optical systems. Phys. Rev. A 77, 032303 (2008)

    Article  ADS  Google Scholar 

  22. Ma, X., Sun, S., Jiang, M., Liang, L.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88, 022339 (2013)

    Article  ADS  Google Scholar 

  23. Kieran, W.N., Panagiotis, P., Ottaviani, C., Gehring, T., Pirandola, S.: Long-distance continuous-variable measurement-device-independent quantum key distribution with postselection. Phys. Rev. Res. 2(3), 033424 (2020)

    Article  Google Scholar 

  24. Lo, M., Curty, H., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  25. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  26. Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)

    Article  ADS  Google Scholar 

  27. Huang, L., Wang, X., Chen, Z., Sun, Y., Yu, S., Guo, H.: Countermeasure for negative impact of a practical source in continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. Appl. 19, 014023 (2023)

    Article  ADS  Google Scholar 

  28. Papanastasiou, P., Ottaviani, C., Pirandola, S.: Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 96, 042332 (2017)

    Article  ADS  Google Scholar 

  29. Zhang, X., Zhang, Y., Zhao, Y., Wang, X., Yu, S., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 96, 042334 (2017)

    Article  ADS  Google Scholar 

  30. Chen, Z., Zhang, Y., Wang, G., Li, Z., Guo, H.: Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 98, 012314 (2018)

    Article  ADS  Google Scholar 

  31. Da Silva, T.F., Vitoreti, D., Xavier, G.B., Do Amaral, G.C., Temporão, G.P., Von Der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013)

    Article  ADS  Google Scholar 

  32. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)

    Article  ADS  Google Scholar 

  33. Liu, Y., Chen, T., Wang, L., Liang, H., Shentu, G., Wang, J., Cui, K., Yin, H., Liu, N., Li, L., Ma, X., Jason, S.P., Fejer, M., Zhang, Q., Pan, J.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  34. Tian, Y., Wang, P., Liu, J., Du, S., Liu, W., Lu, Z., Wang, X., Li, Y.: Experimental demonstration of continuous-variable measurement-device-independent quantum key distribution over optical fiber. Optica 9, 492–500 (2022)

    Article  ADS  Google Scholar 

  35. Li, Z., Zhang, Y., Xu, F., Peng, X.: and H, Guo, Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052301 (2014)

    Article  ADS  Google Scholar 

  36. Shen, T., Huang, Y., Wang, X., Tian, H., Chen, Z., Yu, S.: Strengthening practical continuous-variable quantum key distribution against measurement angular error. Opt. Express 29, 30978–30990 (2021)

    Article  ADS  Google Scholar 

  37. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, L., Samuel, L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photon. 9, 397–402 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of National Natural Science Foundation of China under Grant No. 61531003, National Natural Science Foundation of China under Grant Nos. 62001041 and 62201012, the Fundamental Research Funds of BUPT under Grant No. 2022RC08, and the Fund of State Key Laboratory of Information Photonics and Optical Communications under Grant No. IPOC2022ZT09.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyu Wang or Ziyang Chen.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Detailed expression of matrix \({{r}_{{\text {A}_{2}}\text {B}_{2}^{'}}}\)

In order to calculate the secret key rate, we need to know the specific values of matrix \({{r}_{{\text {A}_{2}}\text {B}_{2}^{'}}}\). \({{r}_{{\text {A}_{2}}\text {B}_{2}^{'}}}\) can be divided into three parts: the covariance matrix of Alice’s quantum state, the covariance matrix of Bob’s quantum state, and the covariance matrix between Alice and Bob. Firstly, the covariance matrix of Alice’s quantum state is

$$\begin{aligned} {{r}_{{\text {A}_{2}}}}=\left( \begin{matrix} {{V}_\text {A}} &{} 0 \\ 0 &{} {{V}_\text {A}} \\ \end{matrix} \right) . \end{aligned}$$
(A1)

Then, the covariance matrix of Bob’s quantum state is

$$\begin{aligned} {{r}_{\text {B}_{2}^{'}}}=\left( \begin{matrix} \langle {{x}_{\text {B}_{2}^{'}}}{{x}_{\text {B}_{2}^{'}}}\rangle &{} \langle {{x}_{\text {B}_{2}^{'}}}{{p}_{\text {B}_{2}^{'}}}\rangle \\ \langle {{p}_{\text {B}_{2}^{'}}}{{x}_{\text {B}_{2}^{'}}}\rangle &{} \langle {{p}_{\text {B}_{2}^{'}}}{{p}_{\text {B}_{2}^{'}}}\rangle \\ \end{matrix} \right) . \end{aligned}$$
(A2)

In \({{r}_{\text {B}_{2}^{'}}}\), the expression of each component is

$$\begin{aligned} \langle x{{(p)}_{\text {B}_{2}^{'}}}x{{(p)}_{\text {B}_{2}^{'}}}\rangle =&{{T}_\text {x(p)}}({{V}_\text {A}}-1)+1+{{T}_\text {x(p)}}{{\varepsilon }_\text {x(p)}}, \end{aligned}$$
(A3)
$$\begin{aligned} \langle {{x}_{\text {B}_{2}^{'}}}{{p}_{\text {B}_{2}^{'}}}\rangle =&\langle {{p}_{\text {B}_{2}^{'}}}{{x}_{\text {B}_{2}^{'}}}\rangle =-\frac{{{g}_\text {p}}}{\sqrt{2}}\sin \theta \sqrt{{{T}_\text {B}}(V_\text {B}^{2}-1})\nonumber \\&+\frac{{{g}_\text {x}}{{g}_\text {p}}}{2}\sin \theta ({{T}_\text {B}}({{V}_\text {B}}+{{\varepsilon }_\text {B}}-1)-{{T}_\text {A}}({{V}_\text {A}}+{{\varepsilon }_\text {A}}-1)). \end{aligned}$$
(A4)

Lastly, the covariance matrix between Alice and Bob is

$$\begin{aligned} {{C}_{{\text {A}_{2}}\text {B}_{2}^{'}}}=\left( \begin{array}{ll} \sqrt{{{T}_\text {x}}(V_\text {A}^{2}-1)} &{} -\sin \theta \sqrt{{{T}_\text {p}}(V_\text {A}^{2}-1)} \\ 0 &{} -\cos \theta \sqrt{{{T}_\text {p}}(V_\text {A}^{2}-1)} \\ \end{array} \right) . \end{aligned}$$
(A5)

Here, we get the matrix \({{r}_{{\text {A}_{2}}\text {B}_{2}^{'}}}\)

$$\begin{aligned} {{r}_{{\text {A}_{2}}\text {B}_{2}^{'}}}=\left( \begin{matrix} {{r}_{{\text {A}_{2}}}} &{} {{C}_{{\text {A}_{2}}\text {B}_{2}^{'}}} \\ C_{{\text {A}_{2}}\text {B}_{2}^{'}}^\text {T} &{} {{r}_{\text {B}_{2}^{'}}} \\ \end{matrix}\right) . \end{aligned}$$
(A6)

Appendix B Modulation curve of phase modulator

In order to analyze the measurement angle error in the practical application of CV-MDI QKD, we need to know the modulation voltage corresponding to different angles of the phase modulator, which can be obtained by measuring the modulation curve of the phase modulator. We utilized a CETC 44th, GC15PMTC7813 phase modulator in our experiment. At a temperature of 22 \(^\circ \)C, we constructed a coherent structure using two phase modulators. A ramp waveform with a frequency of 3 MHz was applied to the modulator under test, and we performed homodyne detection. We record the output optical power and modulation voltages and then draw the modulation curve according to the records. The drawing results are shown in Fig. 5. The equation of fitted modulation curve is

$$\begin{aligned} \eta =0.4738\sin \left( {\frac{U+\text {1}\text {.8078}}{\text {4}\text {.0537}}\pi }\right) +0.4996, \end{aligned}$$
(B7)
Fig. 5
figure 5

The modulation curve of the phase modulator. The black dot represents the data point of the transmittance corresponding to the modulation voltage, and the red solid line represents the fitting curve of the data point

where U is the modulation voltage and \(\eta \) is the transmittance. The fitting degree of this curve is 0.9995, which shows that the fitting curve is very consistent with the actual data. According to Eq. B7, we get the half wave voltage is \({{V}_{\pi }}=4.0516V\), and the voltage required for perfect orthogonal measurement is \({{V}_{\pi /2}}=2.0258V\). Then, we can convert the angle error to voltage deviation for calculation and measurement:

$$\begin{aligned} {{\theta }_{\text {dev}}}=\frac{{{\theta }_{\text {mou}}}-{{\theta }_{\pi /2}}}{{{\theta }_{\pi /2}}}=\frac{{{V}_{\text {mou}}}-{{V}_{\pi /2}}}{{{V}_{\pi /2}}}, \end{aligned}$$
(B8)

where \({{\theta }_{\text {dev}}}\) is the angle deviation, \(\theta {{(V)}_{\text {mod}}}\) is the modulation angle (voltage), and \(\theta {{(V)}_{\pi /2}}\) is the ideal angle (voltage). Based on Eq. B8, we can conclude that a modulation voltage change of 0.0225V will result in a phase change of 1\(^\circ \). In addition, it is worth noting that the voltage deviation (angle error) here is a relative value with respect to the ideal value, so this method is effective for different experimental environments and phase modulators.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, X., Chen, Z. et al. Impact of non-orthogonal measurement in Bell detection on continuous-variable measurement-device-independent quantum key distribution. Quantum Inf Process 22, 236 (2023). https://doi.org/10.1007/s11128-023-03993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03993-4

Keywords

Navigation