Skip to main content
Log in

Quantum private comparison protocol based on 4D GHZ-like states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposes a new private comparison protocol based on four-dimensional three-particle GHZ-like states. The QPC protocol allows two participants with limited quantum abilities to compare their private information whether they are equal or not with the help of a semi-honest third party. The semi-honest third party means that it may be unfaithful on his own behavior, though it will execute the protocol loyally. The presented QPC protocol not only reduces the requirement on quantum operations without involving the unitary operation, but it also requires only the single-particle measurement. The quantum circuit of the six-qubit state and the measurement results are presented under the IBM Quantum Experimental platform. The correctness and the effectiveness of the suggested protocol are illustrated with some examples. In addition, detailed security analysis demonstrates that the proposed two-party QPC protocol is secure against the internal and external attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)

    Article  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp 175–179 (1984)

  3. Zhang, H.G., Ji, Z.X., Wang, H.Z., Wu, W.Q.: Survey on quantum information security. China Commun. 16(10), 1–36 (2019)

    Article  ADS  Google Scholar 

  4. Wang, F., Zeng, P., Zhao, J., et al.: High-dimensional quantum key distribution based on mutually partially unbiased bases. Phys. Rev. A 101(3), 032340 (2020)

    Article  ADS  Google Scholar 

  5. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys. 22(6), 063017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Yang, L., Wu, J.W., Lin, Z.S., et al.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. Mech. Astron. 63(11), 110311 (2020)

    Article  ADS  Google Scholar 

  7. Xiang, Y., Mo, Z.W.: Quantum secret sharing protocol based on four-dimensional three-particle entangled states. Mod. Phys. Lett. B 30(02), 1550267 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gu, J., Cao, X.Y., Yin, H.L., et al.: Differential phase shift quantum secret sharing using a twin field. Opt. Express 29(6), 9165–9173 (2021)

    Article  ADS  Google Scholar 

  9. Zhou, Y., Yu, J., Yan, Z., et al.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)

    Article  ADS  Google Scholar 

  10. Zhao, S.M., Shen, Z.G., Xiao, H., et al.: Multidimensional reconciliation protocol for continuous-variable quantum key agreement with polar coding. Sci. China Phys. Mech. Astron. 61(9), 090323 (2018)

    Article  Google Scholar 

  11. Liu, C., Cheng, S., Li, H.H., et al.: New semi-quantum key agreement protocol based on the -type entanglement states. Int. J. Theor. Phys. 61(3), 60 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yao, A.C.: Protocols for secure computations. In Proceedings of 23rd IEEE Symposium on Foundations of Computer Science, Washington, DC, pp 160–164 (1982)

  13. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  15. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J., Zhou, H.F., Jia, L., et al.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, Z.X., Zhang, H.G., Wang, H.Z.: Quantum private comparison protocols with a number of multi-particle entangled states. IEEE Access 7, 44613–44621 (2019)

    Article  Google Scholar 

  18. Li, C.Y., Chen, X.B., Li, H.J., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ji, Z.X., Fan, P.R., Zhang, H.G., et al.: Greenberger-Horne-Zeilinger-based quantum private comparison protocol with bit-flipping. Phys. Scr. 96(1), 015103 (2020)

    Article  ADS  Google Scholar 

  20. Xu, Q.D., Chen, H.Y., Gong, L.H., et al.: Quantum private comparison protocol based on four-particle GHZ States. Int. J. Theor. Phys. 59(6), 1798–1806 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, X., Zhang, S.B., Chang, Y., et al.: Efficient quantum private comparison based on entanglement swapping of Bell states. Int. J. Theor. Phys. 60(10), 3783–3796 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gianni, J., Qu, Z.: New Quantum private comparison using hyperentangled GHZ state. J. Quantum Comput. 3(2), 45–54 (2021)

    Article  Google Scholar 

  23. Huang, X., Chang, Y., Cheng, W., et al.: Quantum private comparison of arbitrary single qubit states based on swap test. Chin. Phys. B 31(4), 040303 (2022)

    Article  ADS  Google Scholar 

  24. Xiao, M., Ma, C.A.: Fault-tolerant quantum private comparison protocol. Int. J. Theor. Phys. 61(2), 41 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Jia, H.Y., Wen, Q.Y., Song, T.T., et al.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)

    Article  ADS  Google Scholar 

  26. Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison with -level single-particle states. Phys. Scr. 88(6), 065013 (2013)

    Article  ADS  Google Scholar 

  27. Guo, F.Z., Gao, F., Qin, S.J., et al.: Quantum private comparison protocol based on entanglement swapping of -level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Li, L., Shi, R.: A novel and efficient quantum private comparison scheme. J. Korean Phys. Soc. 75(1), 15–21 (2019)

    Article  ADS  Google Scholar 

  29. Wu, W.Q., Zhao, Y.X.: Quantum private comparison of size using -level Bell states with a semi-honest third party. Quantum Inf. Process. 20(4), 155 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wang, B., Gong, L.H., Liu, S.Q.: Multi-party quantum private size comparison protocol with -dimensional Bell states. Front. Phys. 10, 981376 (2022)

    Article  Google Scholar 

  31. Zhou, N.R., Xu, Q.D., Du, N.S., et al.: Semi-quantum private comparison protocol of size relation with -dimensional Bell states. Quantum Inf. Process. 20(3), 124 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, B., Liu, S.Q., Gong, L.H.: Semi-quantum private comparison protocol of size relation with -dimensional GHZ states. Chin. Phys. B 31(1), 010302 (2022)

    Article  ADS  Google Scholar 

  33. Luo, Q.B., Li, X.Y., Yang, G.W., et al.: A mediated semi-quantum protocol for millionaire problem based on high-dimensional Bell states. Quantum Inf. Process. 21(7), 257 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ye, T.Y., Lian, J.Y.: A novel multi-party semiquantum private comparison protocol of size relationship with -dimensional single-particle states. Phys. A 611, 128424 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  35. Malik, M., Erhard, M., Huber, M., et al.: Multi-photon entanglement in high dimensions. Nat. Photonics 10(4), 248–252 (2016)

    Article  ADS  Google Scholar 

  36. Pivoluska, M., Huber, M., Malik, M.: Layered quantum key distribution. Phys. Rev. A 97(3), 032312 (2018)

    Article  ADS  Google Scholar 

  37. Hu, X.M., Xing, W.B., Zhang, C., et al.: Experimental creation of multi-photon high-dimensional layered quantum states. NPJ Quantum Inf. 6(1), 88 (2020)

    Article  ADS  Google Scholar 

  38. Zhang, X.H., Yan, X.Y., Wang, Y.Q., et al.: Tripartite layered quantum key distribution scheme with a symmetrical key structure. Int. J. Theor. Phys. 59(2), 562–573 (2020)

    Article  MATH  Google Scholar 

  39. IBM Quantum Experience. https://quantum-computing.ibm.com/composer/

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 62161025), the Top Double 1000 Talent Programme of Jiangxi Province (Grant No. JXSQ2019201055), and the Innovation Special Foundation of Graduate Student of Jiangxi Province (Grant No. YC2022-S122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Ying Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhou, S., Gong, LH. et al. Quantum private comparison protocol based on 4D GHZ-like states. Quantum Inf Process 22, 255 (2023). https://doi.org/10.1007/s11128-023-03999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03999-y

Keywords

Navigation