Skip to main content

Advertisement

Log in

Optical manipulation of quantum optic entanglement using graphene clad surface plasmonic polariton device

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Here, graphene clad-based two surface plasmonic polariton modes interference (GTSPPMI) coupler is presented to get optically manipulated quantum interference. The Hong–Ou–Mandel depth varying with optical pulse energy is established theoretically using nano-scale two modes coupling. The fidelity of quantum entanglement is tuned by varying incident optical pulse energy and highest quantum fidelity is obtained as ~ 97.5% with optical pulse of energy 5.12 pJ and width 3.8 ps in graphene cladding. Our results promise to obtain optical reconfiguration of quantum plasmonics circuit in more compact and faster way than that with electrooptic and thermooptic way and high fabrication tolerance making its use in large-scale integrated quantum optic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ladd, T.D., et al.: Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  2. Walther, P., et al.: Experimental one-way quantum computing. Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  3. Ursin, R., et al.: Entanglement based quantum communication over 144 km. Nat. Phys. 3, 481 (2007)

    Article  Google Scholar 

  4. Marcikle, I., de Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Long distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509 (2003)

    Article  ADS  Google Scholar 

  5. Ono, T., Okamato, R., Takeuchi, S.: An entanglement enhanced microscope. Nat. Commun. 4, 2426 (2013)

    Article  ADS  Google Scholar 

  6. Sahu, P.P.: Quantum optic instrument. In: Proceedings of International Conference on Fiber Optics and Photonics (invited), 12–15 December 2018.

  7. O’Brien, J.L., Furusawa, A., Vuckovic, J.: Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009)

    Article  ADS  Google Scholar 

  8. Sahu, P.P.: Compact optical multiplexer using silicon nano-waveguide. IEEE J. Sel. Top. Quantum. Elect. 15, 1537–1541 (2009)

    Article  ADS  Google Scholar 

  9. Kwiat, P.G.: An integrated light circuit. Nature 453, 294–295 (2008)

    Article  ADS  Google Scholar 

  10. Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L.: Plasmonics for extreme light concentration. Nat. Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  11. Berini, P., De Leon, I.: Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 6, 16–24 (2011)

    Article  ADS  Google Scholar 

  12. Wang, Y., Liu, H., Wang, S., Cai, M., Ma, L.: Optical transport properties of graphene surface plasmon polaritons in mid-infrared band. Crystals 9(7), 354 (2019)

    Article  Google Scholar 

  13. Grigorenko, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photonics 6, 749–758 (2012)

    Article  ADS  Google Scholar 

  14. Fei, Z., et al.: Infrared nanoscopy of Dirac plamonics at the graphene- SiO2 interface. Nano Lett. 11, 4701–4705 (2011)

    Article  ADS  Google Scholar 

  15. Kim, J.T., Choi, S.Y.: Graphene based plasmonic waveguides for photonic integrated circuits. Opt. Express 19, 24557–24562 (2011)

    Article  ADS  Google Scholar 

  16. Weber, J.W., Calado, V.E., van de Sanden, M.C.M.: Optical constants of graphene measured by spectroscopi ellipsometry. Appl. Phys. Lett. 97, 091904 (2010)

    Article  ADS  Google Scholar 

  17. Yao, B., Wu, Y., Wang, Z., Cheng, Y., Rao, Y., Cong, Y., Chen, Y., Li, Y.: Demonstration of complex refractive index at graphene waveguide by microfiber based Mach zehnder interferometer. Opt. Express 21, 29818 (2013)

    Article  ADS  Google Scholar 

  18. Luo, K.H., Brauner, S., Eigener, C., Sharapova, P.R., Ricken, R., Meier, T., Herrmann, H., Silberhorn, C.: Non linear integrated quantum electro-optic cricuits. Sci. Adv. 5, eaat1451 (2019)

    Article  ADS  Google Scholar 

  19. Mathews, J.C.F., Politi, A., Sefenov, A., O’Brien, J.L.: Manipulating multiphoton entanglement in waveguide Quantum circuits. Nat. Photonics 3, 8–11 (2009)

    Article  Google Scholar 

  20. Shadbolt, et al.: Generating, manipulating and measuring entsnglement and mixure with a reconfigurable photonic circuit. Nat. Phtotonics 6, 45–49 (2012)

    Article  ADS  Google Scholar 

  21. Sahu, P.P.: Thermooptic reconfigurable Mach Zehnder quantum interference device. Results Phys. 12, 1329–1333 (2019)

    Article  ADS  Google Scholar 

  22. Sahu, P.P.: Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler. J. Lightwave Technol. 34, 1300–1305 (2016)

    Article  ADS  Google Scholar 

  23. Sahu, P.P.: All-optical switch using optically controlled two mode interference coupler. Appl. Opt. 51, 2601–2605 (2012)

    Article  ADS  Google Scholar 

  24. Zhang, H., Virally, S., Bao, Q., Ping, L.K., Massar, S., Godbout, N., Kockkaert, P.: Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37, 1856–1858 (2012)

    Article  ADS  Google Scholar 

  25. Henry, E., Hale, P.J., Moger, J., Savchenkoand, A.K., Mikhailov, M.A.: Coherent nonlinear optical response of graphene. Phys. Rev. Lett 105, 097402 (2010)

    ADS  Google Scholar 

  26. Grant, R.S., Sibbett, W.: Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier. Appl. Phys. Lett. 58, 1119–1121 (1991)

    Article  ADS  Google Scholar 

  27. Sahu, P.P.: A compact surface plasmonics polariton quantum entanglement device. Plasmonics 14, 875–879 (2019)

    Article  Google Scholar 

  28. Sahu, P.P.: Compact component for integrated quantum optic processing. Sci. Rep. 5, 16276-1–16285 (2015)

    Article  ADS  Google Scholar 

  29. Mattle, K., Michler, M., Weinfurter, H., Zeilinger, A., Zukoowski, M.: Non classical statistics at multiport beam splitters. Appl. Phys. B Lasers Opt. 60, S111–S117 (1995)

    Google Scholar 

  30. Sahu, P.P.: Thermooptic two-mode interference device for reconfigurable quantum optic circuits. Quantum Inf. Process. 17, 150–155 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Peruzzo, A., Laing, A., Politi, A., Rudolph, T., O’brien, J.L.: Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2(1), 224 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author remains grateful for providing infrastructure to do this work. This work is completely done by the author and there are no conflicts of interest/competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P.P. Optical manipulation of quantum optic entanglement using graphene clad surface plasmonic polariton device. Quantum Inf Process 22, 248 (2023). https://doi.org/10.1007/s11128-023-04006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04006-0

Keywords

Navigation