Skip to main content
Log in

Quantum Traveler’s dilemma and the role of non-maximal entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we introduce a quantum analogue of two-player Traveler’s dilemma game. Traveler’s dilemma is an entirely new type of game in comparison to Prisoner’s dilemma because of the role of backward induction chain. The game presents a unique challenge as we strive to reduce this classical game to a quantum game without compromising its integrity and complexity. In classical TD with a strict game-theoretical approach, backward induction causes descent to a Nash equilibrium with the worst payoff. Interestingly, experiments have shown that individuals and groups choose strategies that demonstrably provide much higher payoffs than what the pure classical analysis predicts. We have shown in this paper that with the quantum model, the payoffs are Pareto-optimal at the Nash equilibrium with maximally entangled particles. As the entanglement is made non-maximal, it is observed that the quantum strategies do not always produce the Pareto-optimal Nash equilibrium at all values of the entanglement parameter \(\gamma \). We observe phase transition like behavior for the Nash equilibria. The behavior of the TD game with a generalized payoff matrix and the effect of the entanglement parameter are analyzed in detail in this work. The relation between the Eisert–Wilkens–Lewenstein entangler parameter \(\gamma \) and the von Neumann entropy S of the resultant state is analyzed. As can be anticipated in an actual experiment, entanglement may not always be maximal and therefore it becomes important to know the value of the parameter \(\gamma \) before the players finalize a strategy. We show that the Traveler’s dilemma is completely resolved in the quantum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Fréchet, M.: Commentary on the three notes of emile borel. Econom. J. Econom. Soc. 118–124 (1953)

  2. Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. In: Theory of Games and Economic Behavior, Princeton University Press (2007)

  3. Morgenstern, O.: The collaboration between oskar morgenstern and john von neumann on the theory of games. J. Econ. Lit. 14(3), 805–816 (1976)

    Google Scholar 

  4. Deutsch, D.E.: Quantum computational networks. Proc. R. Soc. Lond. A. Math. Phys. Sci. 425(1868), 73–90 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  6. Hayward, M.: Quantum Computing and Shor’s Algorithm. Macquarie University Mathematics Department, Sydney (2008)

    Google Scholar 

  7. Grover L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  8. Meyer David, A.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47(14–15), 2543–2556 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ramzan, M., Nawaz, A., Toor, A.H., Khan, M.K.: The effect of quantum memory on quantum games. J. Phys. A: Math. Theor. 41(5), 055307 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ichikawa, T., Tsutsui, I., Cheon, T.: Quantum game theory based on the schmidt decomposition. J. Phys. A: Math. Theor. 41(13), 135303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Supp. Syst. 46(1), 318–332 (2008)

    Article  Google Scholar 

  14. Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64(3), 030301 (2001)

    Article  ADS  Google Scholar 

  15. Flitney, A.P., Abbott, D.: Quantum version of the monty hall problem. Phys. Rev. A 65(6), 062318 (2002)

    Article  ADS  Google Scholar 

  16. Flitney, A.P., Ng, J., Abbott, D.: Quantum parrondo’s games. Physica A 314(1–4), 35–42 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lai, J.W., Cheong, K.H.: Parrondo’s paradox from classical to quantum: a review. Nonlinear Dyn. 100(1), 849–861 (2020)

    Article  MATH  Google Scholar 

  18. Lai, J.W., Cheong, K.H.: Parrondo effect in quantum coin-toss simulations. Phys. Rev. E 101(5), 052212 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, Q., Iqbal, A., Chen, M., Abbott, D.: Evolution of quantum strategies on a small-world network. Eur. Phys. J. B 85, 1–9 (2012)

    Article  Google Scholar 

  20. Li, Q., Iqbal, A., Chen, M., Abbott, D.: Evolution of quantum and classical strategies on networks by group interactions. New J. Phys. 14(10), 103034 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Q., Iqbal, A., Perc, M., Chen, M., Abbott, D.: Coevolution of quantum and classical strategies on evolving random networks. PLoS ONE 8(7), e68423 (2013)

    Article  ADS  Google Scholar 

  22. Li, Q., Chen, M., Perc, M., Iqbal, A., Abbott, D.: Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free network. Sci. Rep. 3(2949), 10 (2013)

    Google Scholar 

  23. Phoenix, S., Khan, F., Teklu, B.: Preferences in quantum games. Phys. Lett. A 384(15), 126299 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Teklu, B., Genoni, M., Olivares, S., Paris, M.: Phase estimation in the presence of phase diffusion: the qubit case. Phys. Scr. 014062(09), 2010 (2010)

    Google Scholar 

  25. Brivio, D., Cialdi, S., Vezzoli, S., Teklu, B., Genoni, M., Olivares, S., Paris, M.: Experimental estimation of one-parameter qubit gates in the presence of phase diffusion. Phys. Rev. A 81, 10 (2009)

    Google Scholar 

  26. Teklu, B., Olivares, S., Paris, M.: Bayesian estimation of one-parameter qubit gates. J. Phys. B: At. Mol. Opt. Phys. 42, 12 (2008)

    Google Scholar 

  27. Basu, K.: The traveler’s dilemma: paradoxes of rationality in game theory. Am. Econ. Review 84(391–95), 02 (1994)

    Google Scholar 

  28. Basu, K.: The traveler’s dilemma. Sci. Am. 296(90–5), 07 (2007)

    Google Scholar 

  29. Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 2(04), R175–R187 (2002)

    Article  MathSciNet  Google Scholar 

  30. Avishai, Y.: Some topics in quantum games. Preprint arXiv:1306.0284 (2013)

  31. Bordg, A., He, Y.: Comment on“ quantum games and quantum strategies”. Preprint arXiv:1911.09354 (2019)

  32. Monica Capra, C., Goeree, J.K., Gomez, R., Holt, C.A.: Anomalous behavior in a traveler’s dilemma? Am. Econ. Review 89(3), 678–690 (1999)

    Article  Google Scholar 

  33. KUDOSE SATORU: Traveler’s dilemma. math.uchicago.edu (2007)

  34. Jiangfeng, D., Xiaodong, X., Li, H., Zhou, X., Han, R.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 289(1–2), 9–15 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Jiangfeng, D., Xiaodong, X., Li, H., Zhou, X., Han, R.: Playing prisoner’s dilemma with quantum rules. Fluct. Noise Lett. 2(04), R189–R203 (2002)

    Article  MathSciNet  Google Scholar 

  36. Jiangfeng, D., Li, H., Xiaodong, X., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A: Math. Gen. 36(23), 6551 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jiangfeng, D., Li, H., Xiaodong, X., Shi, M., Jihui, W., Zhou, X., Han, R.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88(13), 137902 (2002)

    Article  ADS  Google Scholar 

  38. Elgazzar, A.S.: Unique solution to the quantum prisoner’s dilemma game. J. Phys. Soc. Jpn. 88(3), 034801 (2019)

    Article  ADS  Google Scholar 

  39. Jozsa, R., Schlienz, J.: Distinguishability of states and von neumann entropy. Phys. Rev. A 62(1), 012301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. Linden, N., Winter, A.: A new inequality for the von neumann entropy. Commun. Math. Phys. 259, 129–138 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hidalgo, E.G.: Quantum games entropy. Physica A 383(2), 797–804 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Rezakhani, A.T.: Characterization of two-qubit perfect entanglers. Phys. Rev. A 70(5), 052313 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Shen, Y., Chen, L.: Entangling power of two-qubit unitary operations. J. Phys. A: Math. Theor. 51(39), 395303 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Review A 67(4), 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors Hoor Banu thanks PES University for the fellowship for the PhD course.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Raghavendra Rao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 66 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, H., Rao, K.R. Quantum Traveler’s dilemma and the role of non-maximal entanglement. Quantum Inf Process 22, 252 (2023). https://doi.org/10.1007/s11128-023-04016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04016-y

Keywords

Navigation