Skip to main content
Log in

Tunable optical response properties in a Laguerre-Gaussian rovibrational cavity system with a mechanical pump

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we theoretically investigate the optical response properties in a Laguerre-Gaussian (L-G) rovibrational cavity system driven by an external mechanical pump. The L-G rovibrational-cavity system assisted by an optical parametric amplifier (OPA) provides a well-established optomechanical circumstance to manipulate the double-optomechanically induced transparency and optical second-order sideband generation (OSSG). It shows that the mechanical pump and OPA further enhances or suppresses the probe transmission strength. The tunable conversion between slow and fast light can be realized by simultaneously modulating the amplitude and phase of mechanical pump and the enhancement or suppression of slow and fast light effects is also sensitive to the gain coefficient of OPA. Moreover, we find that the presence of the OPA promotes the efficiency of the OSSG. These results provide a more flexible approach to controlling light propagation and are helpful for quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007)

    ADS  Google Scholar 

  2. Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. 525(3), 215–233 (2013)

    MATH  Google Scholar 

  3. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014)

    ADS  Google Scholar 

  4. Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express 15(25), 17172–17205 (2007)

    ADS  Google Scholar 

  5. Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Groblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478(7367), 89–92 (2011)

    ADS  Google Scholar 

  6. Gigan, S., Bohm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bauerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444(7115), 67–70 (2006)

    ADS  Google Scholar 

  7. Liu, Y.C., Xiao, Y.F., Luan, X.S., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110(15), 153606 (2013)

    ADS  Google Scholar 

  8. Yasir, K.A., Zhuang, L., Liu, W.M.: Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Phys. Rev. A 95(1), 013810 (2017)

    ADS  Google Scholar 

  9. Feng, J.S., Tan, L., Gu, H.Q., Liu, W.M.: Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime. Phys. Rev. A 96(6), 063818 (2017)

    ADS  Google Scholar 

  10. Braginsky, V.B., Vyatchanin, S.P.: Low quantum noise tranquilizer for Fabry-Perot interferometer. Phys. Lett. A 293(5–6), 228–234 (2002)

    ADS  MATH  Google Scholar 

  11. Krause, A.G., Winger, M., Blasius, T.D., Lin, Q., Painter, O.: A high-resolution microchip optomechanical accelerometer. Nat. Photonics 6(11), 768–772 (2012)

    ADS  Google Scholar 

  12. Liu, J., Zhu, K.D.: Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics. Photonics Res. 6(9), 867–874 (2018)

    Google Scholar 

  13. Zhang, J.P., Hernandez, G., Zhu, Y.F.: Slow light with cavity electromagnetically induced transparency. Opt. Lett. 33(1), 46–48 (2008)

    ADS  Google Scholar 

  14. Chen, B., Jiang, C., Zhu, K.D.: Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A 83(5), 055803 (2011)

    ADS  Google Scholar 

  15. Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322(5899), 235–238 (2008)

    ADS  Google Scholar 

  16. Kanamoto, R., Meystre, P.: Optomechanics of ultracold atomic gases. Phys. Scr. 82(3), 038111 (2010)

    ADS  Google Scholar 

  17. Kazemi, S.H., Ghanbari, S., Mahmoudi, M.: Controllable optical bistability in a cavity optomechanical system with a Bose-Einstein condensate. Laser Phys. 26(5), 055502 (2016)

    ADS  Google Scholar 

  18. Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81(4), 041803 (2010)

    ADS  Google Scholar 

  19. Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330(6010), 1520–1523 (2010)

    ADS  Google Scholar 

  20. Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69–73 (2011)

    ADS  Google Scholar 

  21. Teufel, J.D., Donner, T., Li, D.L., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475(7356), 359–363 (2011)

    ADS  Google Scholar 

  22. Harris, S.E., Field, J.E., Imamoglu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64(10), 1107–1110 (1990)

    ADS  Google Scholar 

  23. Boller, K.J., Imamoglu, A., Harris, S.E.: Obeservation of electromagnetically induced transparency. Phys. Rev. Lett. 66(20), 2593–2596 (1991)

    ADS  Google Scholar 

  24. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997)

    Google Scholar 

  25. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77(2), 633–673 (2005)

    ADS  Google Scholar 

  26. Liu, Z.X., Wang, B., Kong, C., Xiong, H., Wu, Y.: Magnetic-field-dependent slow light in strontium atom-cavity system. Appl. Phys. Lett. 112(11), 111109 (2018)

    ADS  Google Scholar 

  27. Shen, J.Q., He, S.L.: Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide. Phys. Rev. A 74(6), 063831 (2006)

    ADS  Google Scholar 

  28. Li, S.J., Yang, X.D., Cao, X.M., Zhang, C.H., Xie, C.D., Wang, H.: Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system. Phys. Rev. Lett. 101(7), 073602 (2008)

    ADS  Google Scholar 

  29. Luo, X.Q., Wang, D.L., Zhang, Z.Q., Ding, J.W., Liu, W.M.: Nonlinear optical behavior of a four-level quantum well with coupled relaxation of optical and longitudinal phonons. Phys. Rev. A 84(3), 033803 (2011)

    ADS  Google Scholar 

  30. Diniz, E.C., Borges, H.S., Villas-Boas, C.J.: Multiple transparency windows and Fano interferences induced by dipole-dipole couplings. Phys. Rev. A 97(4), 043848 (2018)

    ADS  Google Scholar 

  31. Hughes, S., Agarwal, G.S.: Controlling dipole transparency with magnetic fields. Opt. Lett. 43(24), 5953–5956 (2018)

    ADS  Google Scholar 

  32. Zeng, C., Cui, Y.D., Liu, X.M.: Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials. Opt. Express 23(1), 545–551 (2015)

    ADS  Google Scholar 

  33. Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9(10), 820–824 (2014)

    ADS  Google Scholar 

  34. Qu, K.N., Agarwal, G.S.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87(3), 031802 (2013)

    ADS  Google Scholar 

  35. Massel, F., Heikkila, T.T., Pirkkalainen, J.M., Cho, S.U., Saloniemi, H., Hakonen, P.J., Sillanpaa, M.A.: Microwave amplification with nanomechanical resonators. Nature 480(7377), 351–354 (2011)

    ADS  Google Scholar 

  36. Fan, L.R., Fong, K.Y., Poot, M., Tang, H.X.: Cascaded optical transparency in multimode-cavity optomechanical systems. Nat. Commun. 6, 5850 (2015)

    ADS  Google Scholar 

  37. Shen, Z., Zhang, Y.L., Chen, Y., Zou, C.L., Xiao, Y.F., Zou, X.B., Sun, F.W., Guo, G.C., Dong, C.H.: Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10(10), 657–661 (2016)

    ADS  Google Scholar 

  38. Fang, K.J., Luo, J., Metelmann, A., Matheny, M.H., Marquardt, F., Clerk, A.A., Painter, O.: Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13(5), 465–471 (2017)

    Google Scholar 

  39. Shen, Z., Zhang, Y.L., Chen, Y., Sun, F.W., Zou, X.B., Guo, G.C., Zou, C.L., Dong, C.H.: Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018)

    ADS  Google Scholar 

  40. Lu, H., Jiang, Y.J., Wang, Y.Z., Jing, H.: Optomechanically induced transparency in a spinning resonator. Photonics Res. 5(4), 367–371 (2017)

    Google Scholar 

  41. Jing, H., Ozdemir, S.K., Geng, Z., Zhang, J., Lu, X.-Y., Peng, B., Yang, L., Nori, F.: Author Correction: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 12(1), 20838 (2022)

    ADS  Google Scholar 

  42. Lu, H., Wang, C.Q., Yang, L., Jing, H.: Optomechanically Induced Transparency at Exceptional Points. Phys. Rev. Appl. 10(1), 014006 (2018)

    ADS  Google Scholar 

  43. Xiong, H., Huang, Y.M., Wan, L.L., Wu, Y.: Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency. Phys. Rev. A 94(1), 013816 (2016)

    ADS  Google Scholar 

  44. Jiao, Y., Lu, H., Qian, J., Li, Y., Jing, H.: Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay. New J. Phys. 18, 083034 (2016)

    ADS  Google Scholar 

  45. Jiao, Y.F., Lu, T.X., Jing, H.: Optomechanical second-order sidebands and group delays in a Kerr resonator. Phys. Rev. A 97(1), 013843 (2018)

    ADS  Google Scholar 

  46. Liao, Q.H., Xiao, X., Nie, W.J., Zhou, N.R.: Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express 28(4), 5288–5305 (2020)

    ADS  Google Scholar 

  47. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90(2), 023817 (2014)

    ADS  Google Scholar 

  48. Jing, H., Ozdemir, S.K., Geng, Z., Zhang, J., Lu, X.Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)

    ADS  Google Scholar 

  49. Liu, Y.L., Wu, R.B., Zhang, J., Ozdemir, S.K., Yang, L., Nori, F., Liu, Y.X.: Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Phys. Rev. A 95(1), 013843 (2017)

    ADS  Google Scholar 

  50. Peng, J.X., Chen, Z., Yuan, Q.Z., Feng, X.L.: Optomechanically induced transparency in a Laguerre-Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields. Phys. Rev. A 99(4), 043817 (2019)

    ADS  Google Scholar 

  51. Peng, J.X., Chen, Z., Yuan, Q.Z., Feng, X.L.: Double optomechanically induced transparency in a Laguerre-Gaussian rovibrational cavity. Phys. Lett. A 384(7), 126153 (2020)

    Google Scholar 

  52. Kazemi, S.H., Mahmoudi, M.: Optomechanical second-order sideband effects in a Laguerre-Gaussian rotational-cavity system. Phys. Scr. 95(4), 045107 (2020)

    ADS  Google Scholar 

  53. Zhang, Z.C., Pei, J.C., Wang, Y.P., Wang, X.G.: Measuring orbital angular momentum of vortex beams in optomechanics. Front. Phys. 16(3), 32503 (2021)

    ADS  Google Scholar 

  54. Liu, Y.M., Bai, C.H., Wang, D.Y., Wang, T., Zheng, M.H., Wang, H.F., Zhu, A.D., Zhang, S.: Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble. Opt. Express 26(5), 6143–6157 (2018)

    ADS  Google Scholar 

  55. Shi, Z.G., Chen, X.W., Song, K.H.: Mode coupling and enhanced Kerr nonlinearity with multiple Rayleigh scatterers containing a single dipole quantum emitter surrounding a whispering-gallery microcavity. Eur. Phys. J. Plus 135(11), 888 (2020)

    Google Scholar 

  56. Peng, B., Ozdemir, S.K., Lei, F.C., Monifi, F., Gianfreda, M., Long, G.L., Fan, S.H., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10(5), 394–398 (2014)

    Google Scholar 

  57. Xiao, X., Liao, Q.H., Zhou, N.R., Nie, W.J., Liu, Y.C.: Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system. Sci. China-Phys. Mech. Astron. 63(11), 114211 (2020)

    ADS  Google Scholar 

  58. Ding, M.S., Xin, X.X., Qin, S.Y., Li, C.: Enhanced entanglement and steering in PT-symmetric cavity magnomechanics. Opt. Commun. 490, 126903 (2021)

    Google Scholar 

  59. Sutluoglu, B., Bulutay, C.: Static synthetic gauge field control of double optomechanically induced transparency in a closed-contour interaction scheme. Phys. Rev. A 104(3), 033504 (2021)

    ADS  MathSciNet  Google Scholar 

  60. Kundu, A., Jin, C., Peng, J.X.: Optical response of a dual membrane active-passive optomechanical cavity. Ann. Phys. 429, 168465 (2021)

    MathSciNet  Google Scholar 

  61. Lu, T.X., Jiao, Y.F., Zhang, H.L., Saif, F., Jing, H.: Selective and switchable optical amplification with mechanical driven oscillators. Phys. Rev. A 100(1), 013813 (2019)

    ADS  Google Scholar 

  62. Feng, L.J., Gong, S.Q.: Two-photon blockade generated and enhanced by mechanical squeezing. Phys. Rev. A 103(4), 043509 (2021)

    ADS  Google Scholar 

  63. Wang, X.Y., Si, L.G., Lu, X.H., Wu, Y.: Static Casimir effect induced optical chaos in an optomechanical system. J. Phys. B At. Mol. Opt. Phys. 54(5), 055402 (2021)

    ADS  Google Scholar 

  64. Aporvari, A.S., Vitali, D.: Strong coupling optomechanics mediated by a qubit in the dispersive regime. Entropy 23(8), 966 (2021)

    ADS  MathSciNet  Google Scholar 

  65. Huang, S., Agarwal, G.S.: Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 79(1), 013821 (2009)

    ADS  Google Scholar 

  66. He, Q., Badshah, F., Li, L.P., Wang, L.B., Su, S.L., Liang, E.J.: Transparency, Stokes, and anti-stokes processes in a multimode quadratic coupling system with parametric amplifier. Ann. Phys. 533(5), 2000612 (2021)

    MathSciNet  Google Scholar 

  67. He, Q., Badshah, F., Din, R.U., Zhang, H.Y., Hu, Y., Ge, G.Q.: Optomechanically induced transparency and the long-lived slow light in a nonlinear system. J. Opt. Soc. Am. B: Opt. Phys. 35(7), 1649–1657 (2018)

    ADS  Google Scholar 

  68. Xu, X.W., Li, Y.: Controllable optical output fields from an optomechanical system with mechanical driving. Phys. Rev. A 92(2), 023855 (2015)

    ADS  MathSciNet  Google Scholar 

  69. Sun, X.J., Chen, H., Liu, W.X., Li, H.R.: Optical-response properties in an atom-assisted optomechanical system with a mechanical pump. J. Phys. B At. Mol. Opt. Phys. 50(10), 105503 (2017)

    ADS  Google Scholar 

  70. Xiong, H., Si, L.G., Zheng, A.S., Yang, X.X., Wu, Y.: Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 86(1), 013815 (2012)

    ADS  Google Scholar 

  71. Walls, D.F., Milburn, G.J.: Quantum optics. Springer Science & Business Media, USA (2007)

    MATH  Google Scholar 

  72. Sun, X.J., Chen, H., Liu, W.X., Li, H.R.: Controllable optical response properties in a hybrid optomechanical system. Quantum Inf. Process. 18(11), 341 (2019)

    ADS  Google Scholar 

  73. Han, C.M., Wang, X., Chen, H., Li, H.R.: Tunable slowand fast light in an atom-assisted optomechanical system with a mechanical pump. Opt. Commun. 456, 124605 (2020)

    Google Scholar 

  74. Xiong, H., Liu, Z.X., Wu, Y.: Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation. Opt. Lett. 42(18), 3630–3633 (2017)

    ADS  Google Scholar 

  75. Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95(3), 033820 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 62061028), the Finance Science and Technology Special "contract system" Project of Nanchang University Jiangxi Province (Grant No. ZBG20230418015), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A-4), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12), and the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Liao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Xu, Q. & Song, M. Tunable optical response properties in a Laguerre-Gaussian rovibrational cavity system with a mechanical pump. Quantum Inf Process 22, 249 (2023). https://doi.org/10.1007/s11128-023-04021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04021-1

Keywords

Navigation