Skip to main content
Log in

Evolutionary-based searching method for quantum circuit architecture

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum architecture search (QAS) is desired to construct a powerful and general QAS platform that can significantly accelerate quantum advantages in error-prone and depth-limited quantum circuits in today’s Noisy Intermediate-Scale Quantum era. In this paper, we propose an evolutionary-based quantum architecture search (EQAS) scheme for the optimal layout to balance the higher expressive power and the trainable ability. In our EQAS, each layout of quantum circuits, i.e., quantum circuit architecture (QCA), is first encoded into a binary string, also called genes. Next, an algorithm is designed to remove the redundant parameters in QCA according to the eigenvalues of the corresponding quantum Fisher information matrix (QFIM). Later, the fitness values of the QCAs are calculated by evaluating the performance of QCAs and are processed with softmax function so that the sum of all fitness values is to 1, and it is used as the probabilities to prepare the parent generation by the Roulette Wheel selection strategy. After that, the mutation and crossover are applied to obtain the next generation. EQAS is verified by the classification task in quantum machine learning over three datasets. The results show that the proposed EQAS can search for the optimal QCA with fewer parameterized gate. And higher accuracies are also obtained by using the proposed EQAS for the classification tasks over the three datasets. Overall, EQAS presents a promising way in quantum architecture search, by taking advantage of QFIM and the evolutionary algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and models generated or used during the study appear in the submitted article.

References

  1. Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., Woerner, S.: The power of quantum neural networks. Nat. Comput. Sci. 1(6), 403–409 (2021)

    Article  Google Scholar 

  2. Adhikary, S.: Entanglement assisted training algorithm for supervised quantum classifiers. Quant. Inf. Process. 20(8), 1–12 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altares-López, S., Ribeiro, A., García-Ripoll, J.J.: Automatic design of quantum feature maps. Quant. Sci. Technol. 6(4), 045015 (2021)

    Article  ADS  Google Scholar 

  4. Bhatia, A.S., Saggi, M.K., Kumar, A., Jain, S.: Matrix product state-based quantum classifier. Neural Comput. 31(7), 1499–1517 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruzewicz, C.D., Chiaverini, J., McConnell, R., Sage, J.M.: Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6(2), 021314 (2019)

    Article  ADS  Google Scholar 

  6. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train One Network and Specialize it for Efficient Deployment. arXiv preprint arXiv:1908.09791 (2019)

  7. Chen, S.Y.C., Huang, C.M., Hsing, C.W., Kao, Y.J.: An end-to-end trainable hybrid classical-quantum classifier. Mach. Learn. Sci. Technol. 2(4), 045021 (2021)

    Article  Google Scholar 

  8. Ding, Y., Gokhale, P., Lin, S.F., Rines, R., Propson, T., Chong, F.T.: Systematic crosstalk mitigation for superconducting qubits via frequency-aware compilation. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 201–214. IEEE (2020)

  9. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-shot neural architecture search with uniform sampling. In: European Conference on Computer Vision, pp. 544–560. Springer (2020)

  10. Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6(3), 107–114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haug, T., Bharti, K., Kim, M.: Capacity and quantum geometry of parametrized quantum circuits. PRX Quant. 2(4), 040309 (2021)

    Article  ADS  Google Scholar 

  12. Jha, A., Ashwood, Z.C., Pillow, J.W.: Bayesian Active Learning for Discrete Latent Variable Models. arXiv preprint arXiv:2202.13426 (2022)

  13. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6(2), 021318 (2019)

    Article  ADS  Google Scholar 

  14. Kuo, E.J., Fang, Y.L.L., Chen, S.Y.C.: Quantum Architecture Search via Deep Reinforcement Learning. arXiv preprint arXiv:2104.07715 (2021)

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for nisq-era quantum devices. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 1001–1014 (2019)

  17. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Appl. 391(6), 2193–2196 (2012)

    Article  Google Scholar 

  18. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable Architecture Search. arXiv preprint arXiv:1806.09055 (2018)

  19. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)

    Article  ADS  Google Scholar 

  20. Meng, F.X., Li, Z.T., Yu, X.T., Zhang, Z.C.: Quantum circuit architecture optimization for variational quantum eigensolver via monto carlo tree search. IEEE Trans. Quant. Eng. 2, 1–10 (2021)

    Article  Google Scholar 

  21. Meyer, J.J.: Fisher information in noisy intermediate-scale quantum applications. Quantum 5, 539 (2021)

    Article  Google Scholar 

  22. Murali, P., Baker, J.M., Javadi-Abhari, A., Chong, F.T., Martonosi, M.: Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In: Proceedings of the Twenty-fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 1015–1029 (2019)

  23. Murali, P., McKay, D.C., Martonosi, M., Javadi-Abhari, A.: Software mitigation of crosstalk on noisy intermediate-scale quantum computers. In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 1001–1016 (2020)

  24. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)

    Article  Google Scholar 

  25. Peruzzo, A., McClean, J., Shadbolt, P., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  26. Schuld, M.: Quantum Machine Learning Models are Kernel Methods. arXiv e-prints pp. arXiv–2101 (2021)

  27. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Szwarcman, D., Civitarese, D., Vellasco, M.: Quantum-inspired neural architecture search. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

  29. Szwarcman, D., Civitarese, D., Vellasco, M.: Quantum-inspired evolutionary algorithm applied to neural architecture search. Appl. Soft Comput. 120, 108674 (2022)

    Article  Google Scholar 

  30. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: A case for variability-aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 987–999 (2019)

  31. Thrun, S., Saul, L.K., Schölkopf, B.: Advances in neural information processing systems 16. In: Proceedings of the 2003 Conference, vol. 16. MIT press (2004)

  32. Versluis, R., Poletto, S., Khammassi, N., Tarasinski, B., Haider, N., Michalak, D.J., Bruno, A., Bertels, K., DiCarlo, L.: Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8(3), 034021 (2017)

    Article  ADS  Google Scholar 

  33. Wang, H., Ding, Y., Gu, J., Lin, Y., Pan, D.Z., Chong, F.T., Han, S.: Quantumnas: Noise-adaptive search for robust quantum circuits. In: 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 692–708. IEEE (2022)

  34. Wu, X.C., Debroy, D.M., Ding, Y., Baker, J.M., Alexeev, Y., Brown, K.R., Chong, F.T.: Tilt: Achieving higher fidelity on a trapped-ion linear-tape quantum computing architecture. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 153–166. IEEE (2021)

  35. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv preprint arXiv:1708.07747 (2017)

  36. Yao, J., Li, H., Bukov, M., Lin, L., Ying, L.: Monte Carlo Tree Search Based Hybrid Optimization of Variational Quantum Circuits. arXiv preprint arXiv:2203.16707 (2022)

  37. Ye, E., Chen, S.Y.C.: Quantum Architecture Ssearch via Continual Reinforcement Learning. arXiv preprint arXiv:2112.05779 (2021)

  38. Ye, W., Liu, R., Li, Y., Jiao, L.: Quantum-inspired evolutionary algorithm for convolutional neural networks architecture search. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

  39. Zhang, A., He, X., Zhao, S.: Quantum Algorithm for Neural Network Enhanced Multi-class Parallel Classification. arXiv preprint arXiv:2203.04097 (2022)

  40. Zhang, S.X., Hsieh, C.Y., Zhang, S., Yao, H.: Differentiable Quantum Architecture Search. arXiv preprint arXiv:2010.08561 (2020)

  41. Zhang, B., Majumder, S., Leung, P.H., Crain, S., Wang, Y., Fang, C., Debroy, D.M., Kim, J., Brown, K.R.: Hidden inverses: coherent error cancellation at the circuit level. Phys. Rev. Appl. 17(3), 034074 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871234), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant KYCX19_0900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengmei Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Zhao, S. Evolutionary-based searching method for quantum circuit architecture. Quantum Inf Process 22, 283 (2023). https://doi.org/10.1007/s11128-023-04033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04033-x

Keywords

Navigation