Skip to main content
Log in

Research on quantum dialogue protocol based on the HHL algorithm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents an improved quantum dialogue protocol based on the HHL algorithm. In this protocol, Alice and Bob want to transmit their classical information to each other. Combining the HHL algorithm and quantum linear equation ensures that eavesdroppers cannot steal the data of communicators. In addition, communicators will connect come HHL quantum circuit constructed in this scheme with the swap test circuit to calculate the solution rather than directly measuring the result, which can improve the solution speed. Security analysis shows that this scheme is more secure than other general quantum dialogue schemes, and it can realize information protection in extreme cases, with good security and higher transmission efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 7–11 (2014)

  3. Liu, B., Xia, S., Xiao, D., Huang, W., Xu, B., Li, Y.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65(4), 240312 (2022)

    Article  ADS  Google Scholar 

  4. Bera, S., Gupta, S., Majumdar, A.S.: Device-Independent Quantum Key Distribution Using Random Quantum States. Quantum Information Processing, 109 (2023). arXiv:2205.07464 [quant-ph]

  5. She, L.-G., Zhang, C.-M.: Reference-frame-independent quantum key distribution with modified coherent states. Quantum Information Processing 21(5), 161 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Nie, Y.-F., Zhang, C.-M.: Afterpulse analysis for reference-frame-independent quantum key distribution. Quant. Inf. Process. 21(9): 340 (2022)

  7. Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 4, 367–374 (2022)

    Article  Google Scholar 

  8. Lan Zhou, Y.-B.S.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022)

    Article  Google Scholar 

  9. Liu, X., Li, Z., Luo, D., Huang, C., Ma, D., Geng, M., Wang, J., Zhang, Z., Wei, K.: Practical decoy-state quantum secure direct communication. Science China (012), 064 (2021)

  10. Liu, X., Luo, D., Lin, G., Chen, Z., Huang, C., Li, S., Zhang, C., Zhang, Z., Wei, K.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65(12), 120311 (2022)

    Article  ADS  Google Scholar 

  11. Jia-Wei Ying, Lan Zhou, Wei Zhong, and Yu-Bo Sheng: Measurement-device-independent one-step quantum secure direct communication. Chinese Phys. B (12), 120303 (2022)

  12. Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single photon sources. Phys. Rev. Appl. (1) (2023). arXiv:2303.15858 [quant-ph]

  13. Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. arXiv:quant-ph/0403215 (2004)

  14. Zhang, Z.J., Man, Z.X.: Secure Bidirectional Communication Protocol without Quantum Channel. arXiv:quant-ph/0403217 (2004)

  15. An, N.B.: Quantum dialogue. arXiv e-prints, arXiv:quant-ph/0406130 (2004)

  16. Han, K.-Q., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent quantum dialogue based on hyperentanglement. Quant. Inf. Process. (9), 280 (2021)

  17. Basak, J., Maitra, A., Maitra, S.: Improved and practical proposal for measurement device independent quantum dialogue. Quant. Inf. Proces. (11), 361 (2021)

  18. Liu, B.-X., Liang, X.-Q.: Novel controlled quantum dialogue protocols without information leakage 61(3), 51

  19. Liu, F., Zhang, X., Xu, P.A., He, Z.X., Ma, H.Y.: A quantum dialogue protocol in discrete-time quantum walk based on hyperentangled states. Int. J. Theor. Phys. 59(11), 3491–3507 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quant. Inf. Process. (12), 331 (2018)

  21. Zhou, N.-R., Li, J.-F., Yu, Z.-B., Gong, L.-H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Information Processing (1), 4 (2017)

  22. Zhang, M.-H., Cao, Z.-W., He, C., Qi, M., Peng, J.-Y.: Quantum dialogue protocol with continuous-variable single-mode squeezed states. Quant. Inf. Process. (3), 83 (2019)

  23. Yang, Y.-G., Gao, S., Zhou, Y.-H., Shi, W.-M.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. J. Orig. Res. Rev. Theor. Phys. Relat. Math., Dedicat. Unif. Phys. 58(9), 2810–2822 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Yin, A., He, K., Fan, P.: Quantum dialogue protocol based on Grover’s search algorithms. Modern Phys. Lett. A (21), 1950169 (2019)

  25. Das, N., Paul, G.: Two efficient measurement device independent quantum dialogue protocols 18(7), 2050038

  26. Pan, H.-M.: Semi-Quantum Dialogue with Bell Entangled States. Int. J. Theor. Phys. 1364–1371 (2020)

  27. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502–150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cao, Y., Daskin, A., Frankel, S., Kais, S.: Quantum circuit design for solving linear systems of equations. Mol. Phys. 110(15/16), 1675–1680 (2012)

    Article  ADS  Google Scholar 

  29. Morrell, J. Hector Jose, Zaman, A., Wong, H.Y.: Step-by-step hhl algorithm walk through to enhance the understanding of critical quantum computing concepts. arXiv e-prints, arXiv:2108.09004 (2021)

  30. Morrell, J. Hector Jose, Zaman, A., Wong, H.Y.: Step-by-Step HHL Algorithm Walkthrough to Enhance the Understanding of Critical Quantum Computing Concepts. arXiv e-prints, arXiv:2108.09004 (2021)

  31. Lopez Alarcon, S., Merkel, C., Hoffnagle, M., Ly, S., Pozas-Kerstjens, A.: Accelerating the training of single-layer binary neural networks using the hhl quantum algorithm. arXiv e-prints, arXiv:2210.12707 (2022)

  32. Zhang, M., Dong, L., Zeng, Y., Cao, N.: Improved circuit implementation of the HHL algorithm and its simulations on QISKIT. Sci. Rep. (1), 13287 (2022)

  33. Kang, M.-S., Heo, J., Choi, S.-G., Moon, S., Han, S.-W.: Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect. Sci. Rep. , 6167 (2019)

  34. Huang, X., Lv, Y., Cheng, W., Hou, M., Zhang, S.-b.: Quantum private comparison of arbitrary single qubit states based on swap test. Chinese Phys. B 31(4), 10 (2022)

  35. Li, P., Wang, B.: Quantum neural networks model based on swap test and phase estimation. Neural Netw. 130, 152–164 (2020)

    Article  Google Scholar 

  36. Ye, Tian-Yu.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 26, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  38. Ai, Z., Yin, A.: Controlled and Authenticated Quantum Dialogue Protocol Based on Grover’s Algorithm. Int. J. Theor. Phys. (11), 261 (2022)

  39. Yin-Ju, L.: Quantum dialogue protocol based on bell entangled states and single photons. Int. J. Theor. Phys. 60(10), 3815–3821 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62172060), Sichuan Science and Technology Program (2022YFG0316,2023ZHCG0004), and National Key R &D Plan (2022YFB3304303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfen Li.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, D., Zhou, J. et al. Research on quantum dialogue protocol based on the HHL algorithm. Quantum Inf Process 22, 340 (2023). https://doi.org/10.1007/s11128-023-04048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04048-4

Keywords

Navigation