Skip to main content
Log in

Enhanced quantum private comparison

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum private comparison (QPC) is judging whether two secrets are equal or not without any information leakage. This paper suggests that the privacy is reflected in the three pieces of information—value, data length, and bits equality. However, existent QPC protocols generally just keep the first item, i.e. value secret, whereas the other two is revealed. This work insists that it should be forbidden for a true QPC protocol. For this purpose, the paper firstly proposes a novel concept of enhanced quantum private comparison (EQPC), which protects not only secrets’ specific value, but also their data length and bits equality, and then presents a novel protocol implementing EQPC. The proposed EQPC protocol was fully analysed correct and secure. Also, it is extremely easy to implement for its only usage of one type of Bell states. It can be said that the EQPC protocol is a significant step forward for the QPC development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, 175–179 (1984)

  2. Chang, Y., Zhang, S.B., Yan, L.L., Li, X.Y., Cao, T., Wang, Q.R.: Device-independent quantum key distribution protocol based on hyper-entanglement. Comput. Mater. Cont. 65(1), 879–896 (2020)

    Google Scholar 

  3. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ye, T.-Y., Geng, M.-J., Xu, T.-J., Chen, Y.: Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 21(4), 123 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Huang, X., Zhang, S.B., Chang, Y., Qiu, C., Liu, D.M., Hou, M.: Quantum key agreement protocol based on quantum search algorithm. Int. J. Theor. Phys. 60(3), 838–847 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yan, L.L., Zhang, S.B., Chang, Y., Sun, Z.B., Sheng, Z.W.: Quantum secure direct communication protocol with mutual authentication based on single photons and bell states. Comput. Mater. Contin. 63(3), 1297–1307 (2020)

    Google Scholar 

  8. Liao, Q., Liu, H.J., Zhu, L.J., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A. 103(3), 032410 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  9. Liu, D.M., Yan, L., Chang, L.Y., Zhang, S.B., Cao, T.: Two quantum private query protocols based on Bell states and single photons. Mod. Phys. Lett. A. 36(2), 2150005 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ye, T.Y., Li, H.K., Hu, J.L.: Information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process 20(6), 209 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lang, Y.-F.: Efficient quantum dialogue using a photon in double degrees of freedom. Int. J. Theor. Phys. 61(4), 105 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lang, Y.-F.: Improvement of information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 61(6), 173 (2022). https://doi.org/10.1007/s10773-022-05162-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  14. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  16. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  17. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    Article  ADS  Google Scholar 

  18. Lang, Y.-F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ye, T.-Y., Ye, C.-Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji, Z.X., Zhang, H.G., Fan, P.R.: Two-party quantum private comparison protocol with maximally entangled seven-qubit state. Mod. Phys. Lett. A. 34(28), 1–179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lang, Y.-F.: Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 59(3), 833–840 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lang, Y.-F.: Quantum private comparison without classical computation. Int. J. Theor. Phys. 59(9), 2984–2992 (2020)

    Article  MATH  Google Scholar 

  23. Huang, X., Zhang, S.B., Chang, Y., et al.: Efficient quantum private comparison based on entanglement swapping of bell states. Int J Theor. Phys. 60, 3783–3796 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lang, Y.-F.: Quantum private comparison using single bell state. Int. J. Theor. Phys. 60(11–12), 4030–4036 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lang, Y.-F.: Fast quantum private comparison without keys and entanglement. Int. J. Theor. Phys. 61(2), 45 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Tian, Y., Li, J., Ye, C., Chen, X.-B., Li, C.-Y.: W-state-based semi-quantum private comparison. Int. J. Theor. Phys. 61(2), 18 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, Q.: Quantum private comparison with six-particle maximally entangled states. Mod. Phys. Lett. A. 37(23), 2250149 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  28. Tsai, C.-W., Lin, J., Chao, H.-C., Yang, C.-W.: Cryptanalysis and improvement on two party quantum private comparison based on seven-qubit and eight-qubit states. Mod. Phys. Lett. A. 37(19), 2250120 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kou, T.-Y., Che, B.-C., Dou, Z., et al.: Efficient quantum private comparison protocol utilizing single photons and rotational encryption. Chin. Phys. B. 31(6), 060307 (2022)

    Article  ADS  Google Scholar 

  30. Li, Z.X., Liu, T.H., Zhu, H.F.: Private comparison protocol for multiple semi-quantum users based on bell states. Int. J. Theor. Phys. 61(6), 177 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fan, P., Rahman, A.U., Ji, Z.X., Ji, X.M., Hao, Z.Q., Zhang, H.G.: Two-party quantum private comparison based on eight-qubit entangled state. Mod. Phys. Lett. A. 37(5), 2250026 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. Huang, X., Chang, Y., Cheng, W., Hou, M., Zhang, S.-B.: Quantum private comparison of arbitrary single qubit states based on swap test. Chin. Phys. B. 31(4), 040303 (2022)

    Article  ADS  Google Scholar 

  33. Li, Q., Li, P.S., Xie, L., Chen, L.L., Quan, J.Y.: Security analysis and improvement of a semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process. 21(4), 91 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tian, Y., Li, J., Li, C.Y., Chen, X.-B.: An efficient semi-quantum private comparison protocol based on entanglement swapping of four-particle cluster state and bell state. Int. J. Theor. Phys. 61(3), 67 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiao, M., Ma, C.A.: Fault-tolerant quantum private comparison protocol. Int. J. Theor. Phys. 61(2), 41 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lang, Y.-F.: Quantum private magnitude comparison. Int. J. Theor. Phys. 61(4), 100 (2022). https://doi.org/10.1007/s10773-022-05043-8

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, L.-T., Lang, Y.-F., Zhao, Z.-H.: Quantum private magnitude comparison based on maximum operation. Int. J. Theor. Phys. 62(1), 2 (2023). https://doi.org/10.1007/s10773-022-05268-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  39. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  40. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  41. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)

    Article  ADS  Google Scholar 

  42. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Yan-Feng Lang thanks Daughter Lang Duo-Zi for her support on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Feng Lang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, YF. Enhanced quantum private comparison. Quantum Inf Process 22, 308 (2023). https://doi.org/10.1007/s11128-023-04069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04069-z

Keywords

Navigation