Skip to main content
Log in

Optimal quantum image encryption algorithm with the QPSO-BP neural network-based pseudo random number generator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An optimal quantum image encryption scheme named QPSO-BP-PRNG is presented by integrating back propagation (BP) neural network, quantum particle swarm optimization (QPSO) algorithm, the chaotic map-based PRNG with quantum fractional Fourier transform (QFFrT) and double random-phase encoding (DRPE) techniques to improve the effects of traditional pseudo random number generator (PRNG) for image encryption algorithms. Firstly, to achieve the exceptional incipient parameters and shorten the training time of the BP neural network, the initial weights and the threshold values of the BP neural network are renovated by the QPSO algorithm. Subsequently, the optimized QPSO-BP neural network is adopted to train the sample sequences produced from the quantum logistic map-based PRNG, which eliminates chaotic periodicity due to the strong nonlinear variability of the neural network. Lastly, the new sequences yielded with the enhanced QPSO-BP-PRNG are involved in the encoding of phase angles and the scrambling operation of the encryption procedure. According to the simulation results, the error ratio of the QPSO-BP neural network is within 0.00008 after 1000 iterations, moreover, the proposed quantum image encryption scheme performs well in security as well as reconstruction quality of decryption image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou, N.R., Hua, T.X., Gong, L.H., et al.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14, 1193–1213 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bhattacharjee, K., Das, S.: A search for good pseudo-random number generators: Survey and empirical studies. Comput. Sci. Rev. 45, 100471 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Machicao, J., Bruno, O.M.: Improving the pseudo-randomness properties of chaotic maps using deep-zoom. Chaos 27(5), 053116 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Gong, L.H., Luo, H.X.: Dual color images watermarking scheme with geometric correction based on quaternion FOFMMs and LS-SVR. Opt. Laser Technol. (2023). https://doi.org/10.1016/j.optlastec.2023.109665

    Article  Google Scholar 

  5. EL-Latif, A.A.A., Abd-El-Atty, B., Venegas-Andraca, S.E.: Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption. Phys A 547, 123869 (2020)

  6. Murillo-Escobar, M.A., Cruz-Hernandez, C., Cardoza-Avendano, L.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2016)

    Article  MathSciNet  Google Scholar 

  7. Zhou, N.R., Tong, L.J., Zou, W.P.: Multi-image encryption scheme with quaternion discrete fractional Tchebyshev moment transform and cross-coupling operation. Signal Process. 211, 109107 (2023)

    Article  Google Scholar 

  8. Hamza, R.: A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl. 35, 119–127 (2017)

    Google Scholar 

  9. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144(6–7), 333–340 (2009)

    ADS  MathSciNet  Google Scholar 

  10. Li, Z.W., Sai, R.: Neural networks as geometric chaotic maps. IEEE Trans. Neural Netw. Learn. Syst. 34(1), 527–533 (2023)

    Article  MathSciNet  Google Scholar 

  11. Zhou, N.R., Zhang, T.F., Xie, X.W., et al.: Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution. Signal Process. Image Commun. 110, 116891 (2023)

    Article  Google Scholar 

  12. Norouzi, B., Sattar, M.: An image encryption algorithm based on DNA sequence operations and cellular neural network. Multimed. Tools Appl. 76(11), 13681–13701 (2017)

    Article  Google Scholar 

  13. Wang, Y., Liu, S.: Short-term data-based spatial parallel autoreservoir computing on spatiotemporally chaotic system prediction. Neural Comput. Appl. 34, 8713–8722 (2022)

    Article  Google Scholar 

  14. Yu, F., Zhang, Z., Shen, H., et al.: Design and FPGA implementation of a pseudo-random number generator based on a Hopfield neural network under electromagnetic radiation. Front. Phys. 9, 690651 (2021)

    Article  Google Scholar 

  15. Zhou, S., Zhao, Z.P., Wang, X.Y.: Novel chaotic colour image cryptosystem with deep learning. Chaos Solitons Fractals 161, 112380 (2023)

    Article  MathSciNet  Google Scholar 

  16. Wang, F., Zhang, H., Zhou, A.M.: A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 60, 100808 (2021)

    Article  Google Scholar 

  17. Li, J., Zhang, J.Q., Jiang, C.J., et al.: Composite particle swarm optimizer with historical memory for function optimization. IEEE Trans. Cybern. 45(10), 2350–2363 (2017)

    Article  Google Scholar 

  18. Liu, W.B., Wang, Z.D., Yuan, Y., et al.: A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Trans. Cybern. 51(2), 1085–1093 (2021)

    Article  Google Scholar 

  19. Moayedi, H., Mehrabi, M., Mosallanezhad, M., et al.: Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng. Comput. 35(3), 967–984 (2019)

    Article  Google Scholar 

  20. Song, B.Y., Wang, Z.D., Zou, L.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 100, 106960 (2021)

    Article  Google Scholar 

  21. Li, Y.Y., Bai, X.Y., Jiao, L.C., et al.: Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Appl. Soft Comput. 56, 345–356 (2017)

    Article  Google Scholar 

  22. Kumar, N., Mahato, S.K., Bhunia, A.K.: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process. Soft Comput. 24(15), 11365–11397 (2020)

    Article  MATH  Google Scholar 

  23. Li, Y.Y., Xiao, J.J., Chen, Y.Q., et al.: Evolving deep convolutional neural networks by quantum behaved particle swarm optimization with binary encoding for image classification. Neurocomputing 362, 156–165 (2019)

    Article  Google Scholar 

  24. Flori, A., Oulhadj, H., Siarry, P.: Quantum particle swarm optimization: an auto-adaptive pso for local and global optimization. Comput. Optim. Appl. 82, 525–559 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, X.Y., Lin, S.J., Li, Y.: Bit-level image encryption algorithm based on BP neural network and gray code. Multimed. Tools Appl. 80, 11655–11670 (2021)

    Article  Google Scholar 

  27. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. IEEE Int. Conf. Evol. Comput. Proc. 410, 1945–1950 (1998)

    Google Scholar 

  28. Sun, J., Fang, W., Wu, X.J., et al.: Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol. Comput. 20(3), 349–393 (2012)

    Article  Google Scholar 

  29. Weimann, S., Perez-Leija, A., Lebugle, M., et al.: Implementation of quantum and classical discrete fractional Fourier transforms. Nat. Commun. 7, 11027 (2016)

    Article  ADS  Google Scholar 

  30. Goggin, M.E., Sundaram, B., Milonni, P.W.: Quantum logistic map. Phys. Rev. A 41(10), 5705 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. Guo, L.M., Du, H.W., Huang, D.: A quantum image encryption algorithm based on the Feistel structure. Quantum Inf. Process. 21(1), 20 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Vagish, K.D., Rajakumaran, C., Kavitha, R.: Chaos based encryption of quantum images. Multimed. Tools Appl. 79(33–34), 23849–23860 (2020)

    Google Scholar 

  33. Abd-El-Atty, B., Abd El-Latif, A.A., Venegas-Andraca, S.E.: An encryption protocol for NEQR images based on one-particle quantum walks on a circle. Quantum Inf. Process. 18(9), 272 (2019)

    Article  ADS  MATH  Google Scholar 

  34. Gao, Y.J., Xie, H.W., Zhang, J., et al.: A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system. Phys. A 598, 127334 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.: Statistical test criteria for sensitivity indexes of image cryptosystems. Inf. Sci. 550, 313–328 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khan, J.S., Ahmad, J.: Chaos based efficient selective image encryption. Multidimens. Syst. Sign. Process. 30(2), 943–961 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 61861029), the Top Double 1000 Talent Programme of Jiangxi Province (Grant no. JXSQ2019201055), and the Innovation Special Foundation of Graduate Student of Jiangxi Province (Grant no. YC2022-B021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Run Zhou.

Ethics declarations

Conflict of interest

There are no conflicts of interest or competing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, JY., Zhou, NR. Optimal quantum image encryption algorithm with the QPSO-BP neural network-based pseudo random number generator. Quantum Inf Process 22, 318 (2023). https://doi.org/10.1007/s11128-023-04071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04071-5

Keywords

Navigation