Skip to main content
Log in

Improving the implementation of quantum blockchain based on hypergraphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In recent years, there has been a growing interest in the potential of quantum computing for enhancing the security and efficiency of blockchain technology. While quantum blockchain protocols offer improved security over their classical counterparts, implementing such protocols on present-day quantum computers poses difficulties due to the limited number of qubits and quantum gates and the significant effects of noise. In this paper, we propose a set of improvements for implementing a quantum blockchain protocol based on hypergraphs that aim to reduce the required resources and operations and increase noise tolerance. Specifically, we focus on enhancing the state-of-the-art quantum circuits that underpin the quantum blockchain by optimizing the so-called T-count and T-depth, which represent the number of quantum gates and the circuit depth, respectively. Our proposed implementations also leverage proven error detection and correction codes to improve noise tolerance. To evaluate the effectiveness of our proposed improvements, we tested them on real quantum devices. Our results demonstrate a significant reduction in the T-count and T-depth. Overall, our proposed improvements provide a promising direction for the practical implementation of quantum blockchain protocols on current quantum computers and lay a foundation for further research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Orts, F., Ortega, G., Combarro, E.F., Garzón, E.M.: A review on reversible quantum adders. J. Netw. Comput. Appl. 170, 102810 (2020)

    Article  Google Scholar 

  2. Paulavičius, R., Grigaitis, S., Igumenov, A., Filatovas, E.: A decade of blockchain: review of the current status, challenges, and future directions. Informatica 30(4), 729–748 (2019)

    Article  MathSciNet  Google Scholar 

  3. Wang, C., Li, X., Xu, H., Li, Z., Wang, J., Yang, Z., Mi, Z., Liang, X., Su, T., Yang, C.: Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. NPJ Quantum Inf 8(1), 1–6 (2022)

    Article  ADS  Google Scholar 

  4. Anand, A., Schleich, P., Alperin-Lea, S., Jensen, P.W., Sim, S., Díaz-Tinoco, M., Kottmann, J.S., Degroote, M., Izmaylov, A.F., Aspuru-Guzik, A.: A quantum computing view on unitary coupled cluster theory. Chem. Soc. Rev. 51, 1659–1684 (2022)

    Article  Google Scholar 

  5. Yang, Q., Zhao, Y., Huang, H., Xiong, Z., Kang, J., Zheng, Z.: Fusing blockchain and AI with metaverse: a survey. IEEE Open J Comput Soc 3, 122–136 (2022)

    Article  Google Scholar 

  6. Sekar, S., Solayappan, A., Srimathi, J., Raja, S., Durga, S., Manoharan, P., Hamdi, M., Tunze, G.B.: Autonomous transaction model for e-commerce management using blockchain technology. Int J Inf Technol Web Eng 17(1), 1–14 (2022)

    Article  Google Scholar 

  7. Fernandez-Carames, T.M., Fraga-Lamas, P.: Towards post-quantum blockchain: a review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 8, 21091–21116 (2020)

    Article  Google Scholar 

  8. Fedorov, A.K., Kiktenko, E.O., Lvovsky, A.I.: Quantum Computers Put Blockchain Security at Risk. Nature Publishing Group, Berlin (2018)

    Book  Google Scholar 

  9. Unogwu, O.J., Doshi, R., Hiran, K.K., Mijwil, M.M.: Introduction to quantum-resistant blockchain. In: Advancements in Quantum Blockchain With Real-Time Applications, pp. 36–55. IGI Global, Pennsylvania, USA (2022)

  10. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC. In: Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II 30, pp. 280–310 (2020). Springer

  12. Grimes, R.A.: Cryptography Apocalypse: Preparing for the Day When Quantum Computing Breaks Today’s Crypto. Wiley, Hoboken (2019)

    Book  Google Scholar 

  13. Li, Q., Wu, J., Quan, J., Shi, J., Zhang, S.: Efficient quantum blockchain with a consensus mechanism QDPoS. IEEE Trans. Inf. Forensics Secur. 17, 3264–3276 (2022)

    Article  Google Scholar 

  14. Qu, Z., Zhang, Z., Zheng, M.: A quantum blockchain-enabled framework for secure private electronic medical records in internet of medical things. Inf. Sci. 612, 942–958 (2022)

    Article  Google Scholar 

  15. Wang, W., Yu, Y., Du, L.: Quantum blockchain based on asymmetric quantum encryption and a stake vote consensus algorithm. Sci. Rep. 12(1), 1–12 (2022)

    Google Scholar 

  16. Nilesh, K., Panigrahi, P.K.: Quantum blockchain based on dimensional lifting generalized Gram–Schmidt procedure. IEEE Access 10, 103212–103222 (2022)

    Article  Google Scholar 

  17. Krishnakumar, A.: Quantum Computing and Blockchain in Business: Exploring the Applications, Challenges, and Collision of Quantum Computing and Blockchain. Packt Publishing, Birmingham (2020)

    Google Scholar 

  18. Edwards, M., Mashatan, A., Ghose, S.: A review of quantum and hybrid quantum/classical blockchain protocols. Quantum Inf. Process. 19(6), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  21. Pelofske, E., Bärtschi, A., Eidenbenz, S.: Quantum volume in practice: What users can expect from NISQ devices. arXiv preprint arXiv:2203.03816 (2022)

  22. De Luca, G.: A survey of NISQ era hybrid quantum-classical machine learning research. J. Artif. Intell. Technol. 2(1), 9–15 (2022)

    Google Scholar 

  23. Wei, S., Chen, Y., Zhou, Z., Long, G.: A quantum convolutional neural network on NISQ devices. AAPPS Bull. 32(1), 1–11 (2022)

    Article  ADS  Google Scholar 

  24. Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90(3), 032001 (2021)

    Article  ADS  Google Scholar 

  25. Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94(1), 015004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  26. Thapliyal, H., Muñoz-Coreas, E., Khalus, V.: Quantum circuit designs of carry lookahead adder optimized for T-count, T-depth, and qubits. Sustai. Comput. Inf. Syst. 29, 100457 (2021)

    Google Scholar 

  27. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. In: Concurrency: The Works of Leslie Lamport, pp. 203–226 (2019)

  28. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology-CRYPTO’ 90, pp. 437–455. Springer, Berlin (1991)

    Chapter  Google Scholar 

  29. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of digital time-stamping. In: Sequences II: Methods in Communication, Security, and Computer Science, pp. 329–334 (1993). Springer

  30. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf (2008)

  31. Filatovas, E., Marcozzi, M., Mostarda, L., Paulavičius, R.: A MCDM-based framework for blockchain consensus protocol selection. Expert Syst. Appl. 204, 117609 (2022)

    Article  Google Scholar 

  32. Bernhardt, C.: Quantum Computing for Everyone. Mit Press, Cambridge (2019)

    Book  Google Scholar 

  33. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J Emerg Technol Comput Syst 6(4), 1–31 (2010)

    Article  Google Scholar 

  35. Orts, F., Ortega, G., Garzón, E.M.: An optimized quantum circuit for converting from sign-magnitude to two’s complement. Quantum Inf. Process. 18(11), 1–14 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tan, Y.-Y., Cheng, X.-Y., Guan, Z.-J., Liu, Y., Ma, H.: Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit. Quantum Inf. Process. 17(3), 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Babukhin, D., Pogosov, W.: The effect of quantum noise on algorithmic perfect quantum state transfer on NISQ processors. Quantum Inf. Process. 21(1), 1–18 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Xue, C., Chen, Z.-Y., Wu, Y.-C., Guo, G.-P.: Effects of quantum noise on quantum approximate optimization algorithm. Chin. Phys. Lett. 38(3), 030302 (2021)

    Article  ADS  Google Scholar 

  39. Orts, F., Ortega, G., Combarro, E.F., Rúa, I.F., Garzón, E.M.: Optimized quantum leading zero detector circuits. Quantum Inf. Process. 22(1), 1–17 (2023)

    MathSciNet  Google Scholar 

  40. Gayathri, S., Kumar, R., Dhanalakshmi, S., Dooly, G., Duraibabu, D.B.: T-count optimized quantum circuit designs for single-precision floating-point division. Electronics 10(6), 703 (2021)

    Article  Google Scholar 

  41. Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245 (2019)

    Article  ADS  Google Scholar 

  42. Muñoz-Coreas, E., Thapliyal, H.: Quantum circuit design of a T-count optimized integer multiplier. IEEE Trans. Comput. 68(5), 729–739 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Paler, A., Polian, I., Nemoto, K., Devitt, S.J.: Fault-tolerant, high-level quantum circuits: form, compilation and description. Quantum Sci. Technol. 2(2), 025003 (2017)

    Article  ADS  Google Scholar 

  44. Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate construction. Phys. Rev. A 62(5), 052316 (2000)

    Article  ADS  Google Scholar 

  45. Kliuchnikov, V., Maslov, D., Mosca, M.: Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. IEEE Trans. Comput. 65(1), 161–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Paetznick, A., Svore, K.M.: Repeat-until-success: non-deterministic decomposition of single-qubit unitaries. arXiv preprint arXiv:1311.1074 (2013)

  47. Forest, S., Gosset, D., Kliuchnikov, V., McKinnon, D.: Exact synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets. J. Math. Phys. 56(8), 082201 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates. arXiv preprint arXiv:1206.5236 (2012)

  49. Zhu, H.: Multiqubit Clifford groups are unitary 3-designs. Phys. Rev. A 96(6), 062336 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  50. Bocharov, A., Roetteler, M., Svore, K.M.: Efficient synthesis of universal repeat-until-success quantum circuits. Phys. Rev. Lett. 114(8), 080502 (2015)

    Article  ADS  Google Scholar 

  51. Combaro, E.F., González-Castillo, S.: A Practical Guide to Quantum Machine Learning and Quantum Optimization: Hands-on Approach to Modern Quantum Algorithms. Packt Publishing, United Kingdom (2023)

    Google Scholar 

  52. Younis, E., Sen, K., Yelick, K., Iancu, C.: Qfast: Conflating search and numerical optimization for scalable quantum circuit synthesis. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 232–243 (2021). IEEE

  53. Gheorghiu, V., Mosca, M., Mukhopadhyay, P.: T-count and T-depth of any multi-qubit unitary. NPJ Quantum Inf 8(1), 1–10 (2022)

    Article  Google Scholar 

  54. Gheorghiu, V., Mosca, M., Mukhopadhyay, P.: A (quasi-) polynomial time heuristic algorithm for synthesizing T-depth optimal circuits. NPJ Quantum Inf 8(1), 1–11 (2022)

    Article  Google Scholar 

  55. Rossi, M., Huber, M., Bruß, D., Macchiavello, C.: Quantum hypergraph states. New J. Phys. 15(11), 113022 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Gühne, O., Cuquet, M., Steinhoff, F.E., Moroder, T., Rossi, M., Bruß, D., Kraus, B., Macchiavello, C.: Entanglement and nonclassical properties of hypergraph states. J. Phys. A: Math. Theor. 47(33), 335303 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Dutta, S., Sarkar, R., Panigrahi, P.K.: Permutation symmetric hypergraph states and multipartite quantum entanglement. Int. J. Theor. Phys. 58(11), 3927–3944 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Qu, R., Wang, J., Li, Z., Bao, Y.: Encoding hypergraphs into quantum states. Phys. Rev. A 87(2), 022311 (2013)

    Article  ADS  Google Scholar 

  59. Kruszynska, C., Kraus, B.: Local entanglability and multipartite entanglement. Phys. Rev. A 79(5), 052304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  60. Tsimakuridze, N., Gühne, O.: Graph states and local unitary transformations beyond local Clifford operations. J. Phys. A: Math. Theor. 50(19), 195302 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Rajan, D., Visser, M.: Quantum blockchain using entanglement in time. Quantum Rep. 1(1), 3–11 (2019)

    Article  Google Scholar 

  62. Li, C., Xu, Y., Tang, J., Liu, W.: Quantum blockchain: a decentralized, encrypted and distributed database based on quantum mechanics. J. Quantum Comput. 1(2), 49 (2019)

    Article  Google Scholar 

  63. Banerjee, S., Mukherjee, A., Panigrahi, P.: Quantum blockchain using weighted hypergraph states. Phys. Rev. Res. 2(1), 013322 (2020)

    Article  Google Scholar 

  64. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Orts, F., Ortega, G., Garzón, E.M.: Studying the cost of N-qubit Toffoli gates. In: International Conference on Computational Science, pp. 122–128 (2022). Springer

  66. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+ T circuits via matroid partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  67. Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-count. arXiv preprint arXiv:1308.4134 (2013)

  68. Gidney, C.: Halving the cost of quantum addition. Quantum 2, 74 (2018)

    Article  Google Scholar 

Download references

Funding

This research has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-MIP-21-53.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Orts.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orts, F., Paulavičius, R. & Filatovas, E. Improving the implementation of quantum blockchain based on hypergraphs. Quantum Inf Process 22, 330 (2023). https://doi.org/10.1007/s11128-023-04096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04096-w

Keywords

Navigation