Skip to main content
Log in

Comparing various formulations of macrorealism

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Leggett–Garg inequality (LGI) is used to test incompatibility between the classical world view of macrorealism and quantum mechanics. Except for the LGI, other formulations for testing macrorealism have also been proposed, such as the entropic LGI and the no-signaling-in-time (NSIT) condition. And these formulations of macrorealism are not both the necessary and sufficient conditions for macrorealism. In this paper, analogous to the LGI, an equality for the energy change of a quantum system is given for testing macrorealism. It is called as the energy LG (ELG). Then, we study quantum violations of the ELG, the LGI, the entropic LGI and the NSIT condition for a two-level system. It is shown that for the projective measurement, the ELG can be violated for a wider parameter regime than the NSIT condition, and the NSIT condition can be violated for a wider parameter regime than the LGI and the entropic LGI. For the coarsening measurement reference and coarsening final resolution, we find that the quantum violations of the ELG and the NSIT condition provide the same robustness, which are both the most robust, and the quantum violation of the entropic LGI is the most vulnerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availibility

The authors declare that all the data supporting the findings of this study are available within the article.

References

  1. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415 (2002)

    Article  ADS  Google Scholar 

  3. Leggett, A.J.: Realism and the physical world. Rep. Prog. Phys. 71, 022001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Palacios-Laloy, A., Mallet, F., Nguyen, F., Bertet, P., Vion, D., Esteve, D., Korotkov, A.N.: Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442–447 (2010)

    Article  Google Scholar 

  5. Dressel, J., Broadbent, C.J., Howell, J.C., Jordan, A.N.: Experimental violation of two-party Leggett–Garg inequalities with semiweak measurements. Phys. Rev. Lett. 106, 040402 (2011)

    Article  ADS  Google Scholar 

  6. Goggin, M.E., Almeida, M.P., Barbieri, M., Lanyon, B.P., O’Brien, J.L., White, A.G., Pryde, G.J.: Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. 108, 1256–1261 (2011)

    Article  ADS  Google Scholar 

  7. Knee, G.C., Simmons, S., Gauger, E.M., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Itoh, K.M., Thewalt, M.L.W., et al.: Violation of a Leggett–Garg inequality with ideal non-invasive measurements. Nat. Commun. 3, 606 (2012)

    Article  ADS  Google Scholar 

  8. Zhou, Z.Q., Huelga, S.F., Li, C.F., Guo, G.C.: Experimental detection of quantum coherent evolution through the violation of Leggett–Garg-type inequalities. Phys. Rev. Lett. 115, 113002 (2015)

    Article  ADS  Google Scholar 

  9. Robens, C., Alt, W., Meschede, D., Emary, C., Alberti, A.: Ideal negative measurements in quantum walks disprove theories based on classical trajectories. Phys. Rev. X 5, 011003 (2015)

    Google Scholar 

  10. Usha Devi, A. R., Karthik, H. S., Sudha, Rajagopal, A. K.: Macrorealism from entropic Leggett-Garg inequalities. Phys. Rev. A 87, 052103 (2013)

  11. Kumari, S., Pan, A.K.: Probing various formulations of macrorealism for unsharp quantum measurements. Phys. Rev. A 96, 042107 (2017)

    Article  ADS  Google Scholar 

  12. Kofler, J., Brukner, C.: Condition for macroscopic realism beyond the Leggett–Garg inequalities. Phys. Rev A 87, 052115 (2013)

    Article  ADS  Google Scholar 

  13. Clemente, L., Kofler, J.: Necessary and sufficient conditions for macroscopic realism from quantum mechanics. Phys. Rev. A 91, 062103 (2015)

    Article  ADS  Google Scholar 

  14. Clemente, L., Kofler, J.: No fine theorem for macrorealism: limitations of the Leggett–Garg inequality. Phys. Rev. Lett. 116, 150401 (2016)

    Article  ADS  Google Scholar 

  15. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  16. Kurzynski, P., Ramanathan, R., Kaszlikowski, D.: Entropic test of quantum contextuality. Phys. Rev. Lett. 109, 020404 (2012)

    Article  ADS  Google Scholar 

  17. Chaves, R., Fritz, T.: Entropic approach to local realism and noncontextuality. Phys. Rev. A 85, 032113 (2012)

    Article  ADS  Google Scholar 

  18. Kofle, J., Brukner, Č.: Classical world arising out of quantum physics under the restriction of coarse-grained measurements. Phys. Rev. Lett. 99, 180403 (2007)

  19. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). ((and references therein))

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Jeong, H., Lim, Y., Kim, M.S.: Coarsening measurement references and the quantum-to-classical transition. Phys. Rev. Lett. 112, 010402 (2014)

    Article  ADS  Google Scholar 

  21. Kofler, J., Brukner, Č.: Conditions for quantum violation of macroscopic realism. Phys. Rev. Lett. 101, 090403 (2008)

  22. Jeong, H., Paternostro, M., Ralph, T.C.: Failure of local realism revealed by extremely-coarse-grained measurements. Phys. Rev. Lett. 102, 060403 (2009)

    Article  ADS  Google Scholar 

  23. Vitelli, C., Spagnolo, N., Toffoli, L., Sciarrino, F., De Martini, F.: Quantum-to-classical transition via fuzzy measurements on high-gain spontaneous parametric down-conversion. Phys. Rev. A 81, 032123 (2010)

    Article  ADS  Google Scholar 

  24. Raeisi, S., Sekatski, P., Simon, C.: Coarse graining makes it hard to see micro-macro entanglement. Phys. Rev. Lett. 107, 250401 (2011)

    Article  ADS  Google Scholar 

  25. Wang, T., Ghobadi, R., Raeisi, S., Simon, C.: Precision requirements for observing macroscopic quantum effects. Phys. Rev. A 88, 062114 (2013)

    Article  ADS  Google Scholar 

  26. Sekatski, P., Gisin, N., Sangouard, N.: How difficult is it to prove the quantumness of macroscropic states? Phys. Rev. Lett. 113, 090403 (2014)

    Article  ADS  Google Scholar 

  27. Mal, S., Das, D., Home, D.: Quantum mechanical violation of macrorealism for large spin and its robustness against coarse-grained measurements. Phys. Rev. A 94, 062117 (2016)

    Article  ADS  Google Scholar 

  28. Zhang, Y., Zou, J., Shao, B.: Bell inequality, steering, incompatibility and Leggett–Garg inequality under coarsening measurement. Quantum Inf. Process. 17, 173 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mukherjee, S., Rudra, A., Das, D., Mal, S.: Effects of coarsening measurement times on quantum violations of macrorealism for multilevel spin systems. arXiv:1811.03397v1 (2018)

  30. Zhang, Y., Zou, J., Shao, B.: Comparing Leggett-Garg inequality for work moments with Leggett–Garg inequality and NSIT. Eur. Phys. J. Plus 135, 154 (2020)

    Article  Google Scholar 

  31. Zhang, Y., Tan, X., Qiu, T.: Leggett–Garg inequality, Wigner form of Leggett–Garg inequality and no-signaling-in-time condition under coarsening measurement. Quantum Inf. Process. 21, 157 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Zhang, Y., Tan, X., Qiu, T.: Quantum violation of LGI under an energy constraint for different scenarios systems. Sci. Rep. 13, 12530 (2023)

    Article  ADS  Google Scholar 

  33. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  34. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  35. Sagawa, T., Ueda, M.: Erratum: minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 106, 189901 (2011)

    Article  ADS  Google Scholar 

  36. Jacobs, K.: Quantum measurement and the first law of thermodynamics: the energy cost of measurement is the work value of the acquired information. Phys. Rev. E 86, 040106 (2012)

    Article  ADS  Google Scholar 

  37. Navascués, M., Popescu, S.: How energy conservation limits our measurements. Phys. Rev. Letters 112, 140502 (2014)

  38. Abdelkhalek, K., Nakata, Y., Reeb, D.: Fundamental energy cost for quantum measurement. arXiv:1609.06981 (2016)

  39. Guryanova, Y., Friis, N., Huber, M.: Ideal projective measurements have infinite resource costs. Quantum 4, 222 (2020)

    Article  Google Scholar 

  40. Chanda, T., Das, T., Mal, S., Sen, A., Sen, U.: Canonical Leggett-Garg inequality: nonclassicality of temporal quantum correlations under energy constraint. Phys. Rev. A 98, 022138 (2018)

    Article  ADS  Google Scholar 

  41. Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  42. Maroney, O.J.E., Timpson, C.G.: Quantum-vs. macro-realism: What does the Leggett-Garg inequality actually test? arXiv:1412.6139 (2014)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62201324), and Natural Science Foundation of Shandong Province (ZR2022QA101, ZR2022QF065 and ZR2021LLZ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

ELG

From Eqs. (1), (5) and (9), the ELG under the coarsening final measurement resolution can be obtained as

$$\begin{aligned} E_{LG, \delta }= & {} \frac{1}{4} \alpha \omega \sin ^2\theta \left[ 3+4 (\delta -1) \delta -4 \sqrt{-(\delta -1) \delta } -\left( 4 (\delta -1) \delta \right. \right. \nonumber \\{} & {} +\left. \left. 4 \sqrt{-(\delta -1) \delta }-1\right) \left( \cos 2 \theta +2 \cos ^2\theta (\cos 2 \omega \tau -2 \cos \omega \tau )\right) \right] .\nonumber \\ \end{aligned}$$
(A1)

It can be found that in the case of \(\alpha =0.3, \tau =\frac{\pi }{4\omega }\) and \(\theta =\frac{\pi }{5}\), the ELG can be always violated for any value of coarsening degree \(\delta \), i.e., \(0<\delta <0.5\). In other words, in the case of the coarsening final measurement resolution, there are no conditions that make the ELG not be violated, which is listed in Table 2.

LGI

Using Eqs. (1), (2), (4), (9) and (10), the LGI under the projective measurement, the coarsening measurement reference and the coarsening measurement in final resolution, can be, respectively, given as

$$\begin{aligned} K_\mathrm{{LG}}= & {} \cos ^2\theta -\sin ^2\theta (\cos 2 \omega \tau -2 \cos \omega \tau ), \end{aligned}$$
(A2)
$$\begin{aligned} K_{\mathrm{{LG}}, \mathrm{{\Delta }}}= & {} e^{-2 \mathrm{{\Delta }} ^2} \left[ e^{\mathrm{{\Delta }} ^2} \cos ^2\theta -\sin ^2\theta (\cos 2 \omega \tau -2 \cos \omega \tau )\right] , \end{aligned}$$
(A3)
$$\begin{aligned} K_{\mathrm{{LG}}, \delta }= & {} (1-2 \delta )^2 \left[ \cos ^2\theta -\sin ^2\theta (\cos 2\omega \tau -2 \cos \omega \tau )\right] . \end{aligned}$$
(A4)

It can be found from Eq. (A2) that under the projective measurement, when one of the following conditions is satisfied: (1)\(\theta = 0\); (2) \(\frac{\pi }{2\omega }\le \tau \le \frac{\pi }{\omega }\), the LGI can be satisfied, which is listed in Table 1. From Eq. (A3), we find the LGI with the coarsening measurement in reference, can be satisfied, when \(0.3073<\mathrm{{\Delta }}<1\) (suppose \(\alpha =0.3, \tau =\frac{\pi }{4\omega }\) and \(\theta =\frac{\pi }{5}\)). That is to say, when \(0<\mathrm{{\Delta }}\le 0.3073\), the LGI can be violated. For the coarsening measurement in final resolution, we from Eq. (A4) find that when \(0.0323<\delta <0.5\), the LGI can be satisfied (suppose \(\alpha =0.3, \tau =\frac{\pi }{4\omega }\) and \(\theta =\frac{\pi }{5}\)). And the non-violation conditions of the LGI under coarsening measurement both in reference and in final resolution are listed in Table 2.

Entropic LGI

From Eqs. (9), (10) and (14), the entropic LGI under the projective measurement can be expressed as

$$\begin{aligned} H_{LG}= & {} \frac{1}{16}\left[ -8 \left( \log (\alpha \cos \theta +1)+\left( \log (1-\alpha \cos \theta )+\log \left( \frac{1}{4}\right) \right) \right. \right. \nonumber \\{} & {} +2 \left. \alpha \cos \theta \tanh ^{-1}(\alpha \cos \theta )\right) -2e^{-i\omega \tau }\left( -2\left( -1+e^{i\omega \tau }\right) ^2 \left( \log (\alpha \cos \theta -1)\right. \right. \nonumber \\{} & {} +\log \left. \left( \sin ^2\theta \right) +\log \left( \sin ^2\left( \frac{ \omega \tau }{2}\right) \right) +\log \left( -\frac{1}{2}\right) \right) (\alpha \cos \theta -1)\sin ^2\theta \nonumber \\{} & {} +\left( \log (\alpha \cos \theta +1)+\log \left( \sin ^2\theta \right) +\log \left( \sin ^2\left( \frac{\omega \tau }{2}\right) \right) +\log \left( \frac{1}{2}\right) \right) \nonumber \\{} & {} \times 2 \left( -1+e^{i\omega \tau }\right) ^2 (\alpha \cos \theta +1)\sin ^2\theta +2 e^{i \omega \tau } (\alpha \cos \theta -1)\nonumber \\{} & {} \times (\cos 2 \theta +2 \sin ^2\theta \cos \omega \tau +3) \left( \log (\alpha \cos \theta -1)\right. \nonumber \\{} & {} +\log \left. \left( \cos 2 \theta +2 \sin ^2\theta \cos \omega \tau +3\right) +\log \left( -\frac{1}{8}\right) \right) -2 e^{i \omega \tau } (\alpha \cos \theta +1) \nonumber \\{} & {} \times \left( \log (\alpha \cos \theta +1)+\log \left( \cos 2 \theta +2 \sin ^2\theta \cos \omega \tau +3\right) +\log \left( \frac{1}{8}\right) \right) \nonumber \\{} & {} \times \left. (\cos 2 \theta +2 \sin ^2\theta \cos \omega \tau +3)\right) \!+\!e^{-2 i \omega \tau }\left( -2 \left( -1+e^{2 i \omega \tau }\right) ^2 \!(\alpha \cos \theta \!-\!1)\right. \nonumber \\{} & {} \times \sin ^2\theta \left( \log (\alpha \cos \theta -1)+\log \left( \sin ^2\theta \right) +\log \left( \sin ^2 \omega \tau \right) +\log \left( -\frac{1}{2}\right) \right) \nonumber \\{} & {} +2 \left( -1+e^{2 i \omega \tau }\right) ^2 \sin ^2\theta (\alpha \cos \theta +1) \left( \log (\alpha \cos \theta +1)+\log \left( \sin ^2\theta \right) \right. \nonumber \\{} & {} +\log \left. \left( \sin ^2 \omega \tau \right) +\log \left( \frac{1}{2}\right) \right) +2 e^{2 i \omega \tau } (\alpha \cos \theta -1) \left( \log (\alpha \cos \theta -1)\right. \nonumber \\{} & {} +\log \left. \left( \cos 2 \theta +2 \sin ^2\theta \cos 2 \omega \tau +3\right) +\log \left( -\frac{1}{8}\right) \right) \nonumber \\{} & {} \left( \cos 2 \theta +2 \sin ^2\theta \cos 2 \omega \tau +3\right) -2 e^{2 i \omega \tau } (\alpha \cos \theta +1)\nonumber \\{} & {} \times (\cos 2 \theta +2 \sin ^2\theta \cos 2\omega \tau +3)\left( \log (\alpha \cos \theta +1)\right. \nonumber \\{} & {} +\log \left. \left. \left. \left( \cos 2 \theta +2 \sin ^2\theta \cos 2\omega \tau +3\right) +\log \left( \frac{1}{8}\right) \right) \right) \right] . \end{aligned}$$
(A5)

From above expression, the non-violation conditions of the entropic LGI (i.e., Eq. (14)) for the projective measurement can be found, and then, these non-violation conditions are listed in Table 1.

NSIT condition

From Eqs. (9), (10) and (1517), the NSIT condition with the projective measurement can be written as

$$\begin{aligned}&P(b_1=+1)-\!\sum _{{a_0=\pm 1}} P(a_0,b_1=+1) \!=\!-\!\left( P(b_1=-1) -\! \sum _{{a_0=\pm 1}} P(a_0,b_1=-1)\right) \nonumber \\&\quad =P(b_2=+1)-\sum _{{a_1=\pm 1}} P(a_1,b_2=+1)\nonumber \\&\quad =-\left( P(b_2=-1) - \sum _{{a_1=\pm 1}} P(a_1,b_2=-1)\right) =-\alpha \sin ^2\left( \frac{ \omega \tau }{2}\right) \sin ^2\theta \cos \theta ,\nonumber \\ \end{aligned}$$
(A6)
$$\begin{aligned}&\qquad -\left( P(b_2=+1)-\sum _{{a_0=\pm 1}} P(a_0,b_2=+1)\right) =P(b_2=-1)\nonumber \\&\qquad - \sum _{{a_0=\pm 1}} P(a_0,b_2=-1) =\alpha \sin ^2 \omega \tau \sin ^2\theta \cos \theta , \end{aligned}$$
(A7)
$$\begin{aligned}&P(b_1=+1,c_2=+1) - \sum _{{a_0=\pm 1}} P(a_0,b_1=+1,c_2=+1)\nonumber \\&\quad =- \left( P(b_1=-1,c_2=-1) - \sum _{{a_0=\pm 1}} P(a_0,b_1=-1,c_2=-1))\right) \nonumber \\&\quad =-\frac{1}{4} \alpha \sin ^2\theta \left( 3 +2\cos \omega \tau \sin ^2\theta +\cos 2 \theta \right) \cos \theta \sin ^2\left( \frac{\omega \tau }{2}\right) , \end{aligned}$$
(A8)
$$\begin{aligned}&P(b_1=-1,c_2=+1) - \sum _{{a_0=\pm 1}} P(a_0,b_1=-1,c_2=+1)\nonumber \\&\quad =-\left( P(b_1=+1,c_2=-1) - \sum _{{a_0=\pm 1}} P(a_0,b_1=+1,c_2=-1))\right) \nonumber \\&\quad =\alpha \sin ^4\left( \frac{\tau \omega }{2}\right) \sin ^4\theta \cos \theta , \end{aligned}$$
(A9)
$$\begin{aligned}&P(a_0=+1,c_2=+1) - \sum _{{b_1=\pm 1}} P(a_0=+1, b_1, c_2=+1)\nonumber \\&\quad =-\left( P(a_0=+1,c_2=-1) - \sum _{{b_1=\pm 1}} P(a_0=+1, b_1, c_2=-1)\right) \nonumber \\&\quad =\frac{1}{4} \sin ^2\left( \frac{ \omega \tau }{2}\right) \left[ \cos \omega \tau (\cos 2 \theta +3) +2 \sin ^2\theta \right] (\alpha \cos \theta -1)\sin ^2\theta , \end{aligned}$$
(A10)
$$\begin{aligned}&P(a_0=-1,c_2=+1) - \sum _{{b_1=\pm 1}} P(a_0=-1, b_1, c_2=+1)\nonumber \\&\quad =-\left( P(a_0=-1,c_2=-1) - \sum _{{b_1=\pm 1}} P(a_0=-1, b_1, c_2=-1)\right) \nonumber \\&\quad =\frac{1}{4} \left[ 2 \sin ^2 \omega \tau -\left( 3+2 \cos \omega \tau \sin ^2\theta +\cos 2 \theta \right) \sin ^2\left( \frac{\omega \tau }{2}\right) \right] (\alpha \cos \theta +1)\sin ^2\theta . \end{aligned}$$
(A11)

From Eqs. (A6) to (A11), we find that the NSIT condition under the projective measurement can be satisfied (i.e., Eqs. (1517) is satisfied), if one of the following conditions is satisfied: (1) \(\theta =0\); (2) \(\theta =\frac{\pi }{2}\) and \(\tau =\frac{\pi }{\omega }\). The results obtained for the NSIT condition in this case are summarized in Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tan, X. & Qiu, T. Comparing various formulations of macrorealism. Quantum Inf Process 22, 354 (2023). https://doi.org/10.1007/s11128-023-04099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04099-7

Keywords

Navigation