Skip to main content
Log in

Complete and fidelity-robust hyperentangled-state analysis of photon systems with single-sided quantum-dot-cavity systems under the balance condition

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hyperentangled Bell-state analysis (HBSA) for two-photon systems and hyperentangled Greenberger–Horne–Zeilinger-state analysis (HGSA) for multi-photon systems play significant roles in quantum information processing. In this paper, we propose a complete and fidelity-robust spatial-polarization two-photon HBSA scheme and generalize it to unambiguous multi-photon HGSA based on the interaction between single photons and singly charged quantum dots (QDs) in optical microcavities under the balance condition. Under the balance condition, the requirement for side-leakage rate and coupling strength for the QD-cavity system can be relaxed and the noise brought on by the unbalanced reflectance of coupled and uncoupled QD-cavity systems is effectively suppressed, raising the fidelity of our schemes to unity in theory. When generalizing to the multi-photon HGSA, our scheme can effectively suppress the decrease in efficiency resulting from the increase in the number of photons. In addition, our schemes simplify the discrimination process and reduce the required light–matter interaction by using self-assisted mechanism. These advantages make our schemes more universal and feasible for high-capacity quantum communications and quantum networks based on hyperentanglement with currently available techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)

    Article  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  9. Zhang, H., Sun, Z., Qi, R., Yin, L., Long, G.L., Lu, J.: Realization of quantum secure direct communication over \(100\) km fiber with time-bin and phase quantum states. Light Sci. Appl. 11(1), 83 (2022)

    Article  ADS  Google Scholar 

  10. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367 (2022)

    Article  Google Scholar 

  11. Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65(3), 030301(R) (2002)

    Article  ADS  Google Scholar 

  12. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  ADS  Google Scholar 

  13. Van Houwelingen, J.A.W., Brunner, N., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96(13), 130502 (2006)

    Article  MathSciNet  Google Scholar 

  14. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: quantum teleportation across the Danube. Nature (London) 430(7002), 849 (2004)

    Article  ADS  Google Scholar 

  15. Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57(3), 2208 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Xia, Y., Kang, Y.H., Lu, P.M.: Complete polarized photons Bell-states and Greenberger–Horne–Zeilinger-states analysis assisted by atoms. J. Opt. Soc. Am. B 31(9), 2077 (2014)

    Article  ADS  Google Scholar 

  17. Song, S., Cao, Y., Sheng, Y.B.: Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement. Quant. Inf. Process. 12, 381 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. 103(2), 020501 (2009)

    Article  ADS  Google Scholar 

  19. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)

    Article  ADS  Google Scholar 

  20. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516–519 (2015)

    Article  ADS  Google Scholar 

  21. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)

    Article  ADS  Google Scholar 

  22. Hu, X.M., Guo, Y., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4(7), eaat9304 (2018)

    Article  ADS  Google Scholar 

  23. Li, X.H., Ghose, S.: Hyperentangled bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96(2), 020303 (2017)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044305 (2010)

    Article  ADS  Google Scholar 

  25. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  26. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11(8), 085203 (2014)

    Article  ADS  Google Scholar 

  27. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4(1), 4623 (2014)

    Article  Google Scholar 

  28. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91(3), 032328 (2015)

    Article  ADS  Google Scholar 

  29. Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931–16946 (2017)

    Article  ADS  Google Scholar 

  30. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. A 75(24), 4337 (1995)

    ADS  Google Scholar 

  31. Walborn, S.P., Pádua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68(4), 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75(4), 042317 (2007)

    Article  ADS  Google Scholar 

  33. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96(19), 190501 (2006)

    Article  ADS  Google Scholar 

  34. Wang, C., Zeng, Z., Li, X.: Complete N-photon Greenberger–Horne–Zeilinger state analysis using hyperentanglement. Int. J. Theor. Phys. 55(3), 1568–1576 (2016)

    Article  MATH  Google Scholar 

  35. Wei, T.C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell-state analysis. Phys. Rev. A 75(6), 060305 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A 84(2), 022340 (2011)

    Article  ADS  Google Scholar 

  37. Gao, C.Y., Ren, B.C., Zhang, Y.X., Ai, Q., Deng, F.G.: Universal linear-optical hyperentangled Bell-state measurement. Appl. Phys. Express 13(2), 027004 (2020)

    ADS  Google Scholar 

  38. Zeng, Z., Zhu, K.D.: Complete hyperentangled bell state analysis assisted by hyperentanglement. Laser Phys. Lett. 17(7), 075203 (2020)

    Article  ADS  Google Scholar 

  39. Gao, C.Y., Ren, B.C., Zhang, Y.X., Ai, Q., Deng, F.G.: The linear optical unambiguous discrimination of hyperentangled Bell states assisted by time bin. Ann. Phys. 531(10), 1900201 (2019)

    Article  MathSciNet  Google Scholar 

  40. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

  41. Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29(5), 1029 (2012)

    Article  ADS  Google Scholar 

  42. Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93(2), 022302 (2016)

    Article  ADS  Google Scholar 

  43. Zeng, Z.: Complete analysis of the maximally hyperentangled state via the weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 39(8), 2272–2279 (2022)

    Article  ADS  Google Scholar 

  44. Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6(1), 22016 (2016)

    Article  ADS  Google Scholar 

  45. Zeng, Z., Zhu, K.D.: Complete hyperentangled state analysis using weak cross-Kerr nonlinearity and auxiliary entanglement. New J. Phys. 22(8), 083051 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. Fan, L.L., Xia, Y., Song, J.: Complete hyperentanglement-assisted multi-photon Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. Opt. Commun. 317, 102–106 (2014)

    Article  ADS  Google Scholar 

  47. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91(6), 062321 (2015)

    Article  ADS  Google Scholar 

  48. Zheng, Y.Y., Liang, L.X., Zhang, M.: Self-assisted complete analysis of three-photon hyperentangled Greenberger–Horne–Zeilinger states with nitrogen-vacancy centers in microcavities. Quant. Inf. Process. 17(7), 172 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Wang, T.J., Wang, C.: Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level \(\Lambda \)-type system. Sci. Rep. 6(1), 19497 (2016)

    Article  ADS  Google Scholar 

  50. Atature, M., Dreiser, J., Badolato, A., Hogelle, A., Karrai, K., Imamoglu, A.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551 (2006)

    Article  ADS  Google Scholar 

  51. Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320(5874), 349 (2008)

    Article  ADS  Google Scholar 

  52. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456(7219), 218–221 (2008)

    Article  ADS  Google Scholar 

  53. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot applications to entangling remote spins via a single photon. Phys. Rev. B 78(8), 085307 (2008)

    Article  ADS  Google Scholar 

  54. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78(12), 125318 (2008)

    Article  ADS  Google Scholar 

  55. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80(20), 205326 (2009)

    Article  ADS  Google Scholar 

  56. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20(22), 24664–24677 (2012)

    Article  ADS  Google Scholar 

  57. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86(4), 042337 (2012)

    Article  ADS  Google Scholar 

  58. Zeng, Z.: Self-assisted complete hyperentangled Bell state analysis using quantum-dot spins in optical microcavities. Laser Phys. Lett. 15(5), 055204 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  59. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24(25), 28444–28458 (2016)

    Article  ADS  Google Scholar 

  60. Cao, C., Zhang, L., Han, Y.H., Yin, P.P., Fan, L., Duan, Y.W., Zhang, R.: Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Opt. Express 28(29), 2857–2872 (2020)

    Article  ADS  Google Scholar 

  61. Zheng, Y.Y., Liang, L.X., Zhang, M.: Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron 62(7), 970312 (2019)

    Article  ADS  Google Scholar 

  62. Zhou, X.J., Liu, W.Q., Zheng, Y.B., Wei, H.R., Du, F.F.: Complete hyperentangled Bell states analysis for polarization-spatial-time-bin degrees of freedom with unity fidelity. Ann. Phys. 534(4), 2100509 (2022)

    Article  MathSciNet  Google Scholar 

  63. Liu, Q., Zhang, M.: Complete and deterministic analysis for spatial-polarization hyperentangled Greenberger–Horne–Zeilinger states with quantum-dot cavity systems. J. Opt. Soc. Am. B 30(8), 2263–2270 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  64. Wang, T.J., Wang, C.: Generation and analysis of hyperentangled multiqubit states for photons using quantum-dot spins in optical microcavities. J. Opt. Soc. Am. B 30(10), 2689–2695 (2013)

    Article  ADS  Google Scholar 

  65. Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237 (2014)

    Article  ADS  Google Scholar 

  66. Fan, L., Cao, C.: Deterministic CNOT gate and complete Bell-state analyzer on quantum-dot-confined electron spins based on faithful quantum nondemolition parity detection. J. Opt. Soc. Am. B 38(5), 1593–1603 (2021)

    Article  ADS  Google Scholar 

  67. Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25(10), 10863 (2017)

    Article  ADS  Google Scholar 

  68. Cao, C., Han, Y.H., Zhang, L., Fan, L., Duan, Y.W., Zhang, R.: High-fidelity universal quantum controlled gates on electron-spin qubits in quantum dots inside single-sided optical microcavities. Adv. Quantum Technol. 81(10), 190081 (2019)

    Google Scholar 

  69. Han, Y.H., Cao, C., Zhang, L., Yi, X., Yin, P.P., Fan, L., Zhang, R.: High-fidelity hybrid universal quantum controlled gates on photons and quantum-dot spins. Int. J. Theor. Phys. 60(3), 1136–1149 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  70. Li, Y., Aolita, L., Chang, D.E., Kwek, L.C.: Robust-fidelity atom-photon entangling gates in the weak-coupling regime. Phys. Rev. Lett. 109(16), 160504 (2012)

    Article  ADS  Google Scholar 

  71. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  72. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quant. Inf. Process. 14, 1305 (2015)

    Article  ADS  MATH  Google Scholar 

  73. Cao, C., Chen, X., Duan, Y., Fan, L., Zhang, R., Wang, T., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. Astron. 59, 100315 (2016)

    Article  Google Scholar 

  74. Wang, G.Y., Li, T., Ai, Q., Deng, F.G.: Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom. Opt. Express 26(18), 23333 (2018)

    Article  ADS  Google Scholar 

  75. Wei, H.R., Chen, N.Y., Liu, J.Z.: Heralded universal quantum gate and entangler assisted by imperfect double-sided quantum-dot-microcavity systems. Ann. Phys. (Berlin) 530(8), 1800071 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  76. Liu, J.Z., Wei, H.R., Chen, N.Y.: A heralded and error-rejecting three-photon hyper-parallel quantum gate through cavity-assisted interactions. Sci. Rep. 8(1), 1885 (2018)

    Article  ADS  Google Scholar 

  77. Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197 (2004)

    Article  ADS  Google Scholar 

  78. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200 (2004)

    Article  ADS  Google Scholar 

  79. Peter, E., Senellart, P., Martrou, D., Lemaître, A., Hours, J., Gérard, J.M., Bloch, J.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95(6), 067401 (2005)

    Article  ADS  Google Scholar 

  80. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding. Appl. Phys. Lett. 90(25), 251109 (2007)

    Article  ADS  Google Scholar 

  81. Langbein, W., Borri, P., Woggon, U., Stavarache, V., Reuter, D., Wieck, A.: Control of fine-structure splitting and biexciton binding in In-xGa-x as quantum dots by annealing. Phys. Rev. B 69(16), 161301 (2004)

    Article  ADS  Google Scholar 

  82. Seguin, R., Schliwa, A., Rodt, S., Potschke, K., Pohl, U., Bimberg, D.: Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95(25), 257402 (2005)

    Article  ADS  Google Scholar 

  83. Stevenson, R., Young, R., See, P., Gevaux, D., Cooper, K., Atkinson, P., Farrer, I., Ritchie, D., Shields, A.: Magneticfield-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev. B 73(3), 033306 (2006)

    Article  ADS  Google Scholar 

  84. Calarco, T., Datta, A., Fedichev, P., Pazy, E., Zoller, P.: Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence. Phys. Rev. A 68(1), 012310 (2003)

    Article  ADS  Google Scholar 

  85. Bester, G., Nair, S., Zunger, A.: Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In-xGa-xAs/GaAs quantum dots. Phys. Rev. B 67(16), 161306 (2003)

    Article  ADS  Google Scholar 

  86. Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A.A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T.L., Walck, S.N., Reithmaier, J.P., Klopf, F., Schafer, F.: Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65(19), 195315 (2002)

    Article  ADS  Google Scholar 

  87. Finley, J.J., Mowbray, D.J., Skolnick, M.S., Ashmore, A.D., Baker, C., Monte, A.F.G., Hopkinson, M.: Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots. Phys. Rev. B 66(15), 153316 (2002)

    Article  ADS  Google Scholar 

  88. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180–2184 (2005)

    Article  ADS  Google Scholar 

  89. Greilich, A., Yakovlev, D., Shabaev, A., Efros, A.L., Yugova, I., Oulton, R., Stavarache, V., Reuter, D., Wieck, A., Bayer, M.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313(5785), 341–345 (2006)

    Article  ADS  Google Scholar 

  90. Elzerman, J., Hanson, R., Van Beveren, L.W., Witkamp, B., Vandersypen, L., Kouwenhoven, L.P.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430(6998), 431–435 (2004)

    Article  ADS  Google Scholar 

  91. Kroutvar, M., Ducommun, Y., Heiss, D., Bichler, M., Schuh, D., Abstreiter, G., Finley, J.J.: Optically programmable electron spin memory using semiconductor quantum dots. Nature 432(7013), 81–84 (2004)

    Article  ADS  Google Scholar 

  92. Press, D., De Greve, K., McMahon, P.L., Ladd, T.D., Friess, B., Schneider, C., Kamp, M., Höfling, S., Forchel, A., Yamamoto, Y.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4(6), 367 (2010)

    Article  ADS  Google Scholar 

  93. Brunner, D., Gerardot, B.D., Dalgarno, P.A., Wüst, G., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: A coherent single-hole spin in a semiconductor. Science 325(5936), 70–72 (2009)

    Article  ADS  Google Scholar 

  94. Atatüre, M., Dreiser, J., Badolato, A., Imamoglu, A.: Observation of faraday rotation from a single confined spin. Nat. Phys. 3(2), 101–106 (2007)

    Article  Google Scholar 

  95. Berezovsky, J., Mikkelsen, M., Stoltz, N., Coldren, L., Awschalom, D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320(5874), 349 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project was supported by Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (No. IPOC2022ZT07), P. R. China. This work was also supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61701035 and the Research Innovation Fund for College Students of Beijing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Detailed deduction of the state transformation in our HBSA scheme

Appendix A Detailed deduction of the state transformation in our HBSA scheme

This part gives detailed deduction of how the composite state transforms in our HBSA scheme. While illustrating the deduction, realistic \(\vert r\vert \) is taken into account, and the structure of the system is the same as that in Fig. 2. We take the initial hyperentangled Bell state \({\vert \Omega ^{-}_{00}\rangle }^{1,2}_{P}\otimes {\vert \Omega ^{+}_{01}\rangle }^{1,2}_{S}\) as an example. \(p_1\) is injected into the quantum circuit from the left. After \(p_1\) passing through HWP\(_1\)/WFC\(_1\), the composite state of \(p_1,p_2\) and the electron spin in QD\(_1\) will transform into

$$\begin{aligned} \begin{aligned}&\vert \alpha _{1}\beta _{2}\rangle \otimes r\ \frac{-\vert RR\rangle \vert \uparrow \rangle _1+\vert LL\rangle \vert \uparrow \rangle _1+\vert RR\rangle \vert \downarrow \rangle _1-\vert LL\rangle \vert \downarrow \rangle _1}{2} \\&\quad +\vert \beta _{1}\alpha _{2}\rangle \otimes r\ \frac{\vert RR\rangle \vert \uparrow \rangle _1-\vert LL\rangle \vert \uparrow \rangle _1+\vert RR\rangle \vert \downarrow \rangle _1-\vert LL\rangle \vert \downarrow \rangle _1}{2}. \end{aligned} \end{aligned}$$
(41)

Then, \(p_2\) is injected into the quantum circuit. After \(p_2\) passing through HWP\(_2\)/WFC\(_2\), the composite state of \(p_1,p_2\) and the electron spin in QD\(_1\) will transform into

$$\begin{aligned} \begin{aligned}&\vert \alpha _{1}\beta _{2}\rangle \otimes r^2\ \frac{-\vert RR\rangle \vert \uparrow \rangle _1+\vert LL\rangle \vert \uparrow \rangle _1+\vert RR\rangle \vert \downarrow \rangle _1-\vert LL\rangle \vert \downarrow \rangle _1}{2} \\&\quad +\vert \beta _{1}\alpha _{2}\rangle \otimes r^2\ \frac{-\vert RR\rangle \vert \uparrow \rangle _1+\vert LL\rangle \vert \uparrow \rangle _1+\vert RR\rangle \vert \downarrow \rangle _1-\vert LL\rangle \vert \downarrow \rangle _1}{2}. \end{aligned} \end{aligned}$$
(42)

(42) is equivalent to

$$\begin{aligned} r^2\ {\vert \Omega ^{-}_{00}\rangle }^{1,2}_{P}\otimes {\vert \Omega ^{+}_{01}\rangle }^{1,2}_{S}\otimes \vert -\rangle _1. \end{aligned}$$
(43)

Next, after \(p_1,p_2\) passing through BS\(_1\) and BS\(_2\), the composite state of \(p_1,p_2\) will transform into

$$\begin{aligned} r^2\ {\vert \Omega ^{-}_{00}\rangle }^{1,2}_{P}\otimes {\vert \Omega ^{-}_{00}\rangle }^{1,2}_{S}. \end{aligned}$$
(44)

After \(p_1\) passing through HWP\(_3\)/WFC\(_3\) (no operation performed on \(p_2\) in this process), the composite state of \(p_1,p_2\) and the electron spin in QD\(_2\) will transform into

$$\begin{aligned} \begin{aligned}&\vert \alpha _{1}\alpha _{2}\rangle \otimes r^3\ \frac{-\vert RR\rangle \vert \uparrow \rangle _2+\vert LL\rangle \vert \uparrow \rangle _2+\vert RR\rangle \vert \downarrow \rangle _2-\vert LL\rangle \vert \downarrow \rangle _2}{2} \\&\quad -\vert \beta _{1}\beta _{2}\rangle \otimes r^3\ \frac{\vert RR\rangle \vert \uparrow \rangle _2-\vert LL\rangle \vert \uparrow \rangle _2+\vert RR\rangle \vert \downarrow \rangle _2-\vert LL\rangle \vert \downarrow \rangle _2}{2}. \end{aligned} \end{aligned}$$
(45)

After \(p_2\) passing through HWP\(_4\)/WFC\(_4\) (no operation performed on \(p_1\) in this process), the composite state of \(p_1,p_2\) and the electron spin in QD\(_2\) will transform into

$$\begin{aligned} \begin{aligned}&\vert \alpha _{1}\alpha _{2}\rangle \otimes r^4\ \frac{\vert RR\rangle \vert \uparrow \rangle _2-\vert LL\rangle \vert \uparrow \rangle _2+\vert RR\rangle \vert \downarrow \rangle _2-\vert LL\rangle \vert \downarrow \rangle _2}{2} \\&\quad -\vert \beta _{1}\beta _{2}\rangle \otimes r^4\ \frac{\vert RR\rangle \vert \uparrow \rangle _2-\vert LL\rangle \vert \uparrow \rangle _2+\vert RR\rangle \vert \downarrow \rangle _2-\vert LL\rangle \vert \downarrow \rangle _2}{2}. \end{aligned} \end{aligned}$$
(46)

(46) is equivalent to

$$\begin{aligned} r^4\ {\vert \Omega ^{-}_{00}\rangle }^{1,2}_{P}\otimes {\vert \Omega ^{-}_{00}\rangle }^{1,2}_{S}\otimes \vert +\rangle _2. \end{aligned}$$
(47)

At last, after \(p_1,p_2\) passing through BS\(_3\) and BS\(_4\), the composite state of \(p_1,p_2\) will revert to the initial status, with the global coefficient \(r^4\)

$$\begin{aligned} r^4\ {\vert \Omega ^{-}_{00}\rangle }^{1,2}_{P}\otimes {\vert \Omega ^{+}_{01}\rangle }^{1,2}_{S}. \end{aligned}$$
(48)

The succeeding process SPBSM has been formulated in detail in Sect. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YH., Guo, YQ. & Cao, C. Complete and fidelity-robust hyperentangled-state analysis of photon systems with single-sided quantum-dot-cavity systems under the balance condition. Quantum Inf Process 22, 344 (2023). https://doi.org/10.1007/s11128-023-04101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04101-2

Keywords

Navigation