Skip to main content
Log in

A receiver for quadrature/polarization modulated quantum coherent states in photonic communications employing the Naimark extension

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This work deals with the derivation of a receiver structure for the quantum detection of information-carrying coherent states used in photonic communications systems, that employ the degrees of freedom of both the complex amplitude and the state of polarization in the quantum state, producing a high dimensional modulation in the form of a constellation of quantum composite coherent states to be transmitted in the optical channel. Our receiver is based on the extension of the positive operator value measurements (POVM) in the constellation Hilbert space, towards projective measurements in a larger Hilbert space. Starting from the measurement vectors obtained from an optimum detection/discrimination strategy-the square root method (SRM) in our case-, and basing our analysis on the Naimark extension, we present a procedure for building those projectors for a received modulation format of composite coherent states. We analytically derive the orthogonal and idempotent projectors, arriving at closer form expressions for the considered modulation format, their decomposition in unitary rotations, and suggest a receiver configuration for its physical realization. Finally, an error probability analysis of our modulation formats is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cariolaro, G.: Quantum communications. Springer Berlin (2015). https://doi.org/10.1007/978-3-319-15600-2

    Article  MATH  Google Scholar 

  2. Bergou, J.A., Herzog, U., Hillery, M.: Discrimination of quantum states, in: Paris, M., Rehacek, J. (eds) Quantum State Estimation, pp. 417–465, Springer, Berlin (2004) DOI: https://doi.org/10.1007/978-3-540-44481-7_11

  3. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1, 238–278 (2009). https://doi.org/10.1364/AOP.1.000238

    Article  Google Scholar 

  4. Barnett, S.M., Clarke, R.B.M., Kendon, V.M., Riis, E., Chefles, A., Sasaki, M.: Experimental quantum state discrimination. In: Tombesi, P., Hirota, O. (eds) Quantum Communication, Computing, and Measurement 3. Springer, Boston, MA. (2002). https://doi.org/10.1007/0-306-47114-0_11

  5. Helstrom, C. W.: Quantum detection and estimation theory. Academic Press, New York (1976) ISBN: 978-0124110113

  6. Yuen, H., Kennedy, R., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21(2), 125–134 (1975). https://doi.org/10.1109/TIT.1975.1055351

    Article  MathSciNet  MATH  Google Scholar 

  7. Vilnrotter, V., Lau, C.: Quantum detection and channel capacity for communications applications. Proc. SPIE 4635 Free-Space Laser Commun. Technol. XIV (2002) https://doi.org/10.1117/12.464084

  8. Eldar, Y.C., Megretski, A., Verghese, G.C.: Designing optimal quantum detectors via semidefinite programming. IEEE Trans. Inf. Theor. 49(4), 1007–1012 (2006). https://doi.org/10.1109/TIT.2003.809510

    Article  MathSciNet  MATH  Google Scholar 

  9. Nakahira, K., Kato, K.: Iterative methods for finding optimal quantum measurements under minimum-error and minimax criteria. Phys. Rev. A 91, 012318 (2015). https://doi.org/10.1103/PhysRevA.91.012318

    Article  ADS  MathSciNet  Google Scholar 

  10. Jezek, M., Rehacek, J., Fiurasek, J.: Finding optimal strategies for minimum-error quantum-state discrimination. Phys. Rev. A 65, 060301 (2002). https://doi.org/10.1103/PhysRevA.65.060301

    Article  ADS  Google Scholar 

  11. Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36(6), 1269–1288 (1997). https://doi.org/10.1007/BF02435921

    Article  MathSciNet  MATH  Google Scholar 

  12. Helstrom,C.W., Bayes-Cost Reduction Algorithm in Quantum Hypothesis Testing, IEEE Transactions on Information Theory, VOL. IT-28, NO. 2, pp. 359–366 (1982)

  13. Kato, K., Hirota, O.: Square-root measurement for quantum symmetric mixed state signals. IEEE Trans. Inf. Theory (2003). https://doi.org/10.1109/TIT.2003.820050

    Article  MathSciNet  MATH  Google Scholar 

  14. Takeoka, M., Sasaki, M., van Loock, P.: Design of POVMs with linear optics and continuous measurement. In: Guo, G.C., Lo, H.K., Sasaki, M., Liu, S., (eds.) Quantum Optics and Applications in Computing Communications II, Proc. of SPIE Vol. 5631 pp. 68–77 (2005), doi: https://doi.org/10.1117/12.576708

  15. Sasaki, M., Hirota, O.: Construction of an optimum detection for binary pure-state signals, Phys. Lett. A 224: 2I3–219 (1997) https://doi.org/10.1016/s0375-9601(96)00839-0

  16. Osaki, M., Ban, M., Hirota, O.: Derivation and physical interpretation of the optimum detection operators for coherent-state signals. Phys. Rev. A 54(2), 1691–1701 (1996). https://doi.org/10.1103/PhysRevA.54.1691

    Article  ADS  Google Scholar 

  17. Momose, R., Sasaki, M., Hirota, O.: Physical interpretation of optimum quantum detection operators, in: Hirota, O., Holevo, A.S., Caves, C.M. (eds), Quantum Communication, Computing, and Measurement, Springer, Boston, MA, (1997), https://doi.org/10.1007/978-1-4615-5923-8_31

  18. Eldar, Y.C., Forney, G.D.: On quantum detection and the square root measurement. IEEE Trans. Inf. Theory 47(3), 858–872 (2001). https://doi.org/10.1109/18.915636

    Article  MathSciNet  MATH  Google Scholar 

  19. Hausladen, P., Wootters, W.K.: A ‘pretty good’ measurement for distinguishing quantum states. J. Mod. Opt. 41(12), 2385–2390 (1994). https://doi.org/10.1080/09500349414552221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dalla Pozza, N., Pierobon, G.: Optimality of square-root measurements in quantum state discrimination. Phys. Rev. A 91(4), 042334 (2015). https://doi.org/10.1103/PhysRevA.91.042334

    Article  ADS  Google Scholar 

  21. Kato, K.: Square-root measurement for ternary coherent state signal, tamagawa university quantum ICT research institute. Bulletin 3(1), 29–33 (2013)

    MathSciNet  Google Scholar 

  22. Kato, K., Hirota, O.: Quantum quadrature amplitude modulation system and its applicability to coherent-state quantum cryptography In Meyers, R.E., Shih, Y. (eds) Quantum Communications and Quantum Imaging III, Proc. of SPIE Vol. 5893 (2005) doi: https://doi.org/10.1117/12.618719

  23. Vilnrotter, V., Lau, C.W.: Quantum Detection Theory for the Free-Space Channel,” The Inter Planetary Network Progress Report 42–146 (2001) Jet Propulsion Laboratory, Pasadena, California, pp. 1–34 (2001) http://ipnpr.jpl.nasa.gov/tmo/progress report/42–146/146B.pdf

  24. Kim, Y., Ko, Y. C.: Detection of quantum circular QAM signals, in 2013 IEEE International Conference on ICT Convergence (ICTC), pp. 1078–1082 (2013) https://doi.org/10.1109/ICTC.2013.6675560

  25. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics, Chapter 11, Cambridge University Press, Cambridge (1995) DOI:https://doi.org/10.1017/CBO9781139644105

  26. Corndorf, E., Barbosa, G., Liang, C., Yuen, H.P., Kumar, P.: High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography. Opt. Lett. 28(2), 2040–2042 (2003). https://doi.org/10.1364/OL.28.002040

    Article  ADS  Google Scholar 

  27. Marwah, A.S., Lutkenhaus, N.: Characterization of Gram matrices of multi-mode coherent states. Phys. Rev. A (2019). https://doi.org/10.1103/PhysRevA.99.012346

    Article  Google Scholar 

  28. Chou, C.L., Hsu, L.Y.: Minimum-error discrimination between symmetric mixed quantum states. Phys. Rev. A 68, 042305 (2003). https://doi.org/10.1103/PhysRevA.68.042305

    Article  ADS  Google Scholar 

  29. Fujihara, Y., Usuda, T.S., Takumi, I., Hata, M.: Relationship between optimum quantum detection operators for pure and mixed-state signals. Electron. Commun. Jpn. Part 3 86(10), 8–18 (2003). https://doi.org/10.1002/ECJC.1153

    Article  Google Scholar 

  30. Clarke, R.B.M., Kendon, V.M., Chefles, A., Barnett, S.M., Riis, E., Sasaki, M.: Experimental realization of optimal detection strategies for overcomplete states. Phys Rev A. 64: 012303 (2001) https://doi.org/10.1103/PhysRevA.64.012303

  31. Millar, D.S., Koike-Akino, T., Arık, S.O., Kojima, K., Parsons, K., Yoshida, T., Sugihara, T.: High-dimensional modulation for coherent optical communications systems. Opt. Express 22(7), 8798–8812 (2014). https://doi.org/10.1364/OE.22.008798

    Article  ADS  Google Scholar 

  32. Mumtaz, S., Othman, G. R. B., Jaouën, Y.: Space-time codes for optical fiber communication with polarization multiplexing. In 2010 IEEE International Conference on Communications (pp. 1–5) (2010) https://doi.org/10.1109/ICC.2010.5502528

  33. Aymeric, R., Jaouën, Y., Ware, C., Alléaume, R.: Symbiotic joint operation of quantum and classical coherent communications, in 2022 IEEE Optical Fiber Communications Conference and Exhibition (OFC) (pp. 1–3) (2022) https://doi.org/10.1364/OFC.2022.W2A.37

  34. Djordjevic, I.B.: LDPC-coded M-ary PSK optical coherent state quantum communication. J. Lightwave Technol. 27(5), 494–499 (2009). https://doi.org/10.1109/JLT.2008.2004566

    Article  ADS  MathSciNet  Google Scholar 

  35. Karlsson, M.: Four-dimensional rotations in coherent optical communications. J. Lightwave Technol. 32, 1246–1257 (2014). https://doi.org/10.1109/JLT.2014.2301878

    Article  ADS  Google Scholar 

  36. Zuo, Y., Chen, T., 2, Zhu, B.: Conditional Pulse Nulling Receiver for Multi-pulse PPM and Binary Quantum Coding Signals, Fourth International Conference on Wireless and Optical Communications, Ma, M., Arrasmith, W., Li, P. (eds.) Proc. of SPIE Vol. 9902, 99020V SPIE CCC code: 0277–786X/16/$18 (2016) doi: https://doi.org/10.1117/12.2262106

  37. Chen, J., Habif, J.L., Dutton, Z., Lazarus, R., Guha, S.: Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver. Nat. Photonics 6, 374–379 (2012). https://doi.org/10.1038/NPHOTON.2012.113

    Article  ADS  Google Scholar 

  38. Boroson, D.M., Toward optimum efficiency in a quantum receiver for coded PPM, In: Cugny, B., Karafolas, N., Sodnik, Z. (eds.) ICSO 2016 International Conference on Space Optics, Biarritz, France, Proc. of SPIE Vol. 10562 105623M-1 (2016), doi: https://doi.org/10.1117/12.2296040

  39. Horoshko, D.B., Eskandari, M.M., Kilin, S.Y.: Equiprobable unambiguous discrimination of quantum states by symmetric orthogonalization. Phys. Lett. A 383, 1728–1732 (2019). https://doi.org/10.1016/j.physleta.2019.03.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Waseda, A., Takeoka, M., Sasaki, M., Fujiwara, M., Tanaka, H.: Quantum detection of wavelength-division-multiplexing optical coherent signals. JOSA B 27(2), 259–265 (2010). https://doi.org/10.1364/JOSAB.27.000259

    Article  ADS  Google Scholar 

  41. Fujihara, Y., Tatsuta, S., Usuda, T., S., Takumi, I., Hata, M.: Realization of Quantum Receiver for M-Ary Signals, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol.E84-A No.4 pp. 906–912 (2001)

  42. Sasaki, M., Hirota, O.: Two examples of measurement processes illustrating Helstrom’s optimum decision bound. Phys. Lett. A 210, 2l–25 (1996). https://doi.org/10.1016/0375-9601(95)00844-6

    Article  MathSciNet  MATH  Google Scholar 

  43. Sasaki, M., Hirota, O.: Optimum decision scheme with a unitary control process for binary quantum-state signals. Phys. Rev. A 54, 4 (1996). https://doi.org/10.1103/PhysRevA.54.2728

    Article  Google Scholar 

  44. Brandt, H.E.: Quantum measurement with a positive operator-valued measure. J. Opt. B: Quantum Semiclassical Opt. 5(3), S266 (2003). https://doi.org/10.1088/1464-4266/5/3/357

    Article  ADS  MathSciNet  Google Scholar 

  45. DallaPozza, N., Paris, M.G.A.: Naimark extension for the single-photon canonical phase measurement. Phys. Rev. A. 100, 032126 (2019). https://doi.org/10.1103/PhysRevA.100.032126

    Article  ADS  Google Scholar 

  46. Dalla Pozza, N., Paris M.G.A.: An Effective Iterative Method to Build the Naimark Extension of Rank-N POVMs. Int. J. Quant. Inf. 15(4): 1750029 (2017) https://doi.org/10.1142/S0219749917500290

  47. Tabia, G.N.M.: Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices. Phys. Rev. A 86, 062107 (2012). https://doi.org/10.1103/PhysRevA.86.062107

    Article  ADS  Google Scholar 

  48. Chan, V.: Characterization of measurements in quantum communications, M.I.T., RLE Report 489 (1975)

  49. Andersson, E.: Quantum Measurements. Heriot-Watt University, Edinburgh, UK, Lecture Notes for WAQCT Summer School (2019)

    Google Scholar 

  50. Arvizu-Mondragon, A., Mendieta-Jimenez, F.J., Lopez-Mercado, C., Muraoka-Espiritu, R.: Detection of polarization shift-keyed/switched/multiplexed quantum coherent states in M-ary photonic communication systems. Quantum Inf. Process. 21, 345 (2022). https://doi.org/10.1007/s11128-022-03687-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Arvizu-Mondragon, A., Mendieta-Jimenez, F.J., Lopez-Mercado, C., Muraoka-Espiritu, R.: Measurement vectors for quantum coherent states in M-ary photonic communications with polarization degree of freedom (Submitted)

  52. Zhou, X., Yu, J.: Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission. IEEE J. Lightwave Technol. 27, 3641–3653 (2009). https://doi.org/10.1109/JLT.2009.2022765

    Article  ADS  Google Scholar 

  53. Renaudier, J., et al.: Generation and detection of 28 Gbaud polarization switched-QPSK in WDM long-haul transmission systems. J. Lightwave Technol. 30, 1312–1318 (2012). https://doi.org/10.1109/JLT.2012.2185682

    Article  ADS  Google Scholar 

  54. Kikuch, K.: Quantum theory of noise in stokes vector receivers and application to bit error rate analysis. J. Lightwave Technol. 38, 3164–3172 (2020)

    Article  ADS  Google Scholar 

  55. Guo, Y., Wang, X., Zhang, L., Huang, D.: Polarization-multiplexed quadrature amplitude modulation for continuous-variable quantum key distribution. Int. J. Theor. Phys. (2018). https://doi.org/10.1007/s10773-018-3924-y

    Article  MATH  Google Scholar 

  56. Morsy-Osman, M., Chagnon, M., Plant, D.V.: Four-dimensional modulation and stokes direct detection of polarization division multiplexed intensities inter polarization phase and inter polarization differential phase. J. Lightwave Technol. 34, 1585–1592 (2016). https://doi.org/10.1109/JLT.2016.2521172

    Article  ADS  Google Scholar 

  57. José Capmany, J., Fernández-Pousa, C.R.: Quantum model for electro-optical phase modulation. J. Opt. Soc. Am. B 27, A119–A129 (2010)

    Article  Google Scholar 

  58. Ataman, S.: The quantum optical description of a double Mach-Zehnder interferometer, arXiv preprint arXiv:1407.1704, 2014

  59. Betti, S., Curti, F., De Marchis, G., Iannone, E.: Multilevel coherent optical system based on stokes parameters modulation. J. Lightwave Technol. 8, 1127–1136 (1990)

    Article  ADS  Google Scholar 

  60. Betti, S., De Marchis, G., Iannone, E., Lazzaro, P.: Homodyne optical coherent systems based on polarization modulation. J. Lightwave Technol. 9(I0), 1314–1320 (1991)

    Article  ADS  Google Scholar 

  61. Perrone, P., Betti, S., Rutigliano Giuseppe, G.: Multidimensional modulation in optical fibers. Int. Res. J. Opt. Photonics 2, 1–8 (2018)

    Google Scholar 

  62. Agrell, E., Karlsson, M.: Power-efficient modulation formats in coherent transmission systems. J. Lightwave Technol. 27, 5115–5126 (2009)

    Article  ADS  Google Scholar 

  63. Cusack, B.J., Sheard, B.S., Shaddock, D.A., Gray, M.B., Lam, P.K., Whitcomb, S.E.: Electro-optic modulator capable of generating simultaneous amplitude and phase modulations. Appl. Opt. 43, 50795091 (2004)

    Article  Google Scholar 

  64. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994)

    Article  ADS  Google Scholar 

  65. Knill, E., Lafamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics, Nature, Vol 409 (2001)

  66. Van Loock, P., Lutkenhaus, N.: Simple criteria for the implementation of projective measurements with linear optics. Phys. Rev. A 69, 012302 (2004). https://doi.org/10.1103/PhysRevA.69.012302

    Article  ADS  Google Scholar 

  67. He, B., Bergou, J.A., Wang, Z.: Implementation of quantum operations on single-photon qudits. Phys. Rev. A 76, 042326 (2007). https://doi.org/10.1103/PhysRevA.76.042326

    Article  ADS  Google Scholar 

  68. Burenkov, I. A., Jabir, M. V., Polyakov, S. V.: Practical quantum-enhanced receivers for classical communication, AVS Quantum Sci. 3: 025301, (2021) https://doi.org/10.1116/5.0036959

  69. Cariolaro, G., Pierobon, G.: Performance of quantum data transmission systems in the presence of thermal noise. IEEE Trans. Commun. 58, 623–630 (2010). https://doi.org/10.1109/TCOMM.2010.02.080013

    Article  Google Scholar 

  70. Yuan, R., Zhao, M., Han, S., Cheng, J.: Kennedy receiver using threshold detection and optimized displacement under thermal noise. IEEE Commun. Lett. 24, 1313–1317 (2020). https://doi.org/10.1109/LCOMM.2020.2980537

    Article  Google Scholar 

  71. Teklu, B., Genoni, M.G., Olivares, S., Paris, M.G.A.: Phase estimation in the presence of phase diffusion: the qubit case. Phys. Scr. T140, 014062 (2010). https://doi.org/10.1088/0031-8949/2010/T140/014062

    Article  ADS  Google Scholar 

  72. Gough, J., Interferometric Phase Estimation Though Quantum Filtering in Coherent States arXiv:1601.04374v1 [quant-ph], https://doi.org/10.48550/arXiv.1601.04374

  73. Tsang, M., Shapiro, J.H., Lloyd, S.: Quantum theory of optical temporal phase and instantaneous frequency. Phys. Rev. A. 78, 053820 (2008). https://doi.org/10.1103/PhysRevA.78.053820

    Article  ADS  Google Scholar 

  74. DiMario, M.T., Kunz, L., Banaszek, K.: Optimized communication strategies with binary coherent states over phase noise channels. NPJ Quantum Inf 5, 65 (2019). https://doi.org/10.1038/s41534-019-0177-4

    Article  ADS  Google Scholar 

  75. Teklu, B., Trapani, J., Olivares, S., Paris. M.G.A., Noisy quantum phase communication channels, Phys. Scr. 90: 074027 (2015) https://doi.org/10.1088/0031-949/90/7/074027

  76. Trapani, J., Teklu, B., Olivares, S., Paris, M.G.A.: Quantum phase communication channels in the presence of static and dynamical phase diffusion. Phys. Rev. A 92, 012317 (2015). https://doi.org/10.1103/PhysRevA.92.012317}

    Article  ADS  Google Scholar 

  77. Olivares, S., Cialdi, S., Castelli, F., Paris, M.G.A.: Homodyne detection as a near-optimum receiver for phase-shift-keyed binary communication in the presence of phase diffusion. Phys. Rev. A 87, 050303 (2013). https://doi.org/10.1103/PhysRevA.87.050303}

    Article  ADS  Google Scholar 

  78. Ishimura, S., Kikuchi, K.: Multi-dimensional permutation-modulation format for coherent optical communications. Opt. Express 23(12), 15587–15597 (2015). https://doi.org/10.1364/OE.23.015587

    Article  ADS  Google Scholar 

  79. Gallion, P., Mendieta, F.J., Jiang, S.: Signal and quantum noise in optical communication and in cryptography. In: Wolf, E. (ed.) Progress in Optics, Vol. 52, Elsevier, Netherlands (2009) ISBN: 9780444533500

  80. Eldar, Y.C., Forney, G.D.: Optimal tight frames and quantum measurement. IEEE Trans. Inf. Theory 48, 599–610 (2002). https://doi.org/10.1109/18.985949

    Article  MathSciNet  MATH  Google Scholar 

  81. Ahnert, S.E., Payne, M.C.: General implementation of all possible positive-operator-value measurements of single photon polarization states. Phys. Rev. A 71, 012330 (2005). https://doi.org/10.1103/PhysRevA.71.012330

    Article  ADS  Google Scholar 

  82. Clarke, R.B.M., Chefles, A., Barnett, S.M., and Riis, E.: Experimental demonstration of optimal unambiguous state discrimination, Phys. Rev. A, 63: 040305(R) https://doi.org/10.1103/PhysRevA.63.040305

Download references

Funding

This work has been partially supported by the Mexican National Council for Science and Technology (CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Mendieta-Jiménez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Composite quantum coherent states

In a scalar constellation of K symbols, the quantum state corresponding to its k-th point is represented by a single-mode ket in Dirac's notation: \(\left|{\gamma }_{k}\right.>\), \(k=\mathrm{0,1},\dots , K-1\) in a Hilbert space \({\mathcal{H}}_{0}\) of dimension dim(\({\mathcal{H}}_{0}\)); the state matrix is defined as:

$${\varvec{\Gamma}}=\left[\left|{\gamma }_{0}\right.> \left|{\gamma }_{1}\right.> \dots \left|{\gamma }_{K-1}\right.>\right]$$
(A1.1)

Multidimensional modulation formats must be formulated as vector modulations of order N, and we need a composite Hilbert space \({\mathcal{H}}_{C}\) with dimension dim(\({\mathcal{H}}_{C}\)) = [dim(\({\mathcal{H}}_{0}\))]N, and each composite state of the constellation \(\left|{\gamma }_{k}\right.>\) in Eq. (1) is itself given by the N-fold tensor product:

$$ \left| {\gamma_{k} } \right. > = \left| {\gamma_{k, 0} } \right. > \otimes \left| {\gamma_{k, 1} } \right. > \otimes \cdots \otimes \left| {\gamma_{k, N - 1} } \right. > , k = 0,1, \ldots , K - 1 $$
(A1.2)

which is called an N-mode state; in M-ary modulation formats, the original Hilbert space \({\mathcal{H}}_{0}\) has dimension dim(\({\mathcal{H}}_{0}\)) = 2, corresponding to the in-phase (I) and quadrature (Q) components of a single polarization mode, as represented by N = 2 original states in Eq. (12):

$$\left|{\gamma }_{k, 0}\right.>=\left[\begin{array}{c}{\gamma }_{k, 0, I}\\ {i\gamma }_{k, 0 ,Q} \end{array}\right]and \left|{\gamma }_{k, 1}\right.>=\left[\begin{array}{c}{\gamma }_{k, 1 ,I}\\ {i\gamma }_{k, 1, Q}\end{array}\right], k=\mathrm{0,1},\dots , K-1,i=\sqrt{-1}$$
(A1.3)

where the components \({\gamma }_{k, 0, I}\) and \({\gamma }_{k, 0 ,Q}\) are respectively the in-phase (I) and quadrature (Q) of one of the polarization components of the optical field (SOP "0"); and \({\gamma }_{k, 1 ,I}\) and \({\gamma }_{k, 1, Q}\) are the corresponding quadratures of the antipodal polarization component (SOP "1"); "0" / "1" can represent the horizontal / vertical, left-circular / right-circular or any two antipodal SOPs on the Poincaré sphere.

With the polarization degree of freedom, we then work in a twofold composite Hilbert space \({\mathcal{H}}_{C}\) of dimension dim(\({\mathcal{H}}_{C}\)) = 4, and, depending on the specific M-ary modulation format, the K states of the four-dimensional (4D) constellation \(\left|{\gamma }_{k}\right.>\) are now given by tensor products from permutations of the elements of the following 4D modulation vector [78]:

$$ \left[ {\gamma_{k, 0, I} \;\;i\gamma_{k, 0,Q} \;\;\gamma_{k, 1 ,I} \;\;i\gamma_{k, 1, Q} } \right]^{T} , k = 0,1, \ldots , K - 1 $$
(A1.4)

In this work we develop our analysis for quantum coherent states \(\left|\propto \right.>\), expanded into a Fock state (number-state) basis \(\left|n\right.> , n=0,\dots ,\infty \) [79]:

$$\left|\propto \right.>=\mathrm{exp}(-\frac{1}{2}{\left|\propto \right|}^{2})\sum_{n=0}^{\infty }\frac{{\propto }^{n}}{\sqrt{n!}}\left|n>\right.$$
(A1.5)

where \({\left|\propto \right|}^{2}\) is the average number of photons \({N}_{s}\) in the state \(\left|\propto \right.>\).

For the case of pure coherent states, the inner product of a couple of states is calculated as:

$$<{\gamma }_{k}\left|{\gamma }_{l}\right.> =\mathrm{exp}\left[-\frac{1}{2}\left({\left|{\gamma }_{k}\right|}^{2}+{\left|{\gamma }_{l}\right|}^{2}-{2{\gamma }_{k}}^{*}{\gamma }_{l}\right)\right]$$
(A1.6)

and the absolute value of the degree of superposition of a coherent state of average number of photons \({{N}_{s}=\left|\Delta \right|}^{2}\), with vacuum \(\left|0\right.>\):

$$\left|X\right|=<\Delta \left|0\right.>=exp(-{N}_{s}/2)$$
(A1.7)

Finally, for the N-mode tensor states of Eq. (3), the overlap is computed by the rule [7, 25]:

$$ \left\langle {\gamma_{k} \left| {\gamma_{l} } \right.} \right\rangle = \mathop \prod \limits_{m = 0}^{N - 1} \left\langle {\gamma_{k,m} \left| {\gamma_{l,m} } \right.} \right\rangle = \left\langle {\gamma_{k,0} \left| {\gamma_{l,0} } \right.} \right\rangle \left\langle {\gamma_{k,1} \left| {\gamma_{l,1} } \right.} \right\rangle \ldots \left\langle {\gamma_{k,N - 1} \left| {\gamma_{l,N - 1} } \right.} \right\rangle , k = 0,1, \ldots ,K - 1 $$
(A1.8)

Appendix 2: Quantum measurement vectors

Our aim is to construct a POVM with measurement vectors \(\left|{\mu }_{k}>\right.\) optimized to distinguish between a set of K pure states \(\left|{\upgamma }_{k}\right.>\) that span a subspace \({\mathcal{U}\subseteq \mathcal{H}}_{C}\); a convenient approach is to find a collection of vectors \(\left|{\mu }_{k}>\in \mathcal{U}\right.\) that are “closest” to the original states \(\left|{\upgamma }_{k}\right.>,\) in the least-squares sense, such that the measurement consists of K rank-one POVMs of the form \({\widehat{\Pi }}_{k}=\left|{\mu }_{k}>\right.<{\mu }_{k}|, k=0,...,K-1\) [18, 80].

The SRM method is based on the "measurement matrix" \( \pmb{\mathcal{M}}\) whose elements \(\left|{\mu }_{k}>, \right.\) are the measurement vectors

$$ \pmb{\mathcal{M}}=[\left|{\mu }_{0}> \right.\left|{\mu }_{1}> ... \right. \left|{\mu }_{K-1}>\right.]$$
(A2.1)

so that the projections of the vectors onto their corresponding states are as "close" as possible to the generating states, as shown in Fig.

Fig. 10
figure 10

Quantum state, measurement vector and error vector

10 for a given state \(\left|{\gamma }_{k}>\right.\), where the projections are given by the normalized inner products \(<{\gamma }_{k}\left|{\mu }_{k}\right.>\) between the k-th measurement vector and its corresponding state, with the criterion of keeping the differences \(\left|{e}_{k}\right.>=\left|{\gamma }_{k}\right.>-\left|{\mu }_{k}\right.>\) as small as possible; the SRM finds the measurement vectors minimizing the quadratic error as the sum of the square norm of the error vectors:

$$\mathcal{E}=\sum_{k=0}^{K-1}<{e}_{k}\left|{e}_{k}\right.>=\sum_{k=0}^{K-1}\left(<{\gamma }_{k}\left| -<{\mu }_{k}\left|)(\right.\right.\left|{\upgamma }_{k}\right.>- \left|{\upmu }_{k}\right.>\right)$$
(A2.2)

For the derivation of the optimal measurement matrix, the SRM method starts from the Gram matrix \(\mathcal{G}\) of the constellation \({\varvec{\Gamma}}\); \(\mathcal{G}\) is a Hermitian positive definite K × K square matrix, obtained from the inner products between all couples of composite states:

$$ {\mathbf{\mathcal{G}}} = {{\varvec{\Gamma}}}^{\user2{*}} {{\varvec{\Gamma}}},{\text{with elements}}:{\mathcal{G}}_{kl} = \left\langle {\gamma_{k} \left| {\gamma_{l} } \right.} \right\rangle ,k,l = 0,1, \ldots , K - 1 $$
(A2.3)

the optimal measurement matrix is given by [1]:

$$\boldsymbol{\mathcal{M}}={\varvec{\Gamma}}{\boldsymbol{\mathcal{G}}}^{-1/2}$$
(A2.4)

where the inverse square root matrix \({{\varvec{G}}}^{-1/2}\) has the elements \({G}_{kl}^{-1/2}\); the measurement vectors are then given by the linear combinations of the generating states:

$$\left|{\mu }_{k}>\right.=\sum_{l=0}^{K-1}{\mathcal{G}}_{kl}^{-1/2}\left|{\gamma }_{l}>\right.$$
(A2.5)

the measurement vectors are then used to form the rank-one POVMs [81, 82]:

$${\Pi }_{k}=\left|{\mu }_{k}>\right.<{\mu }_{k}|;\sum_{k}{\Pi }_{k}=1$$
(A2.6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvizu-Mondragón, A., Mendieta-Jiménez, F.J., López-Mercado, C.A. et al. A receiver for quadrature/polarization modulated quantum coherent states in photonic communications employing the Naimark extension. Quantum Inf Process 22, 348 (2023). https://doi.org/10.1007/s11128-023-04103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04103-0

Keywords

Navigation