Abstract
In this paper, we propose a protocol to distinguish chiral molecules using dissipation dynamics. The physical model is based on a four-level structure with a ground level, a lower level, and two excited levels. Under the condition of large detuning, a chirality-selective transition from the ground level to a dressed state of two excited levels can be achieved, where only the left-handed enantiomer can be exited to the dressed state. The left-handed enantiomer in the dressed state will couple with the cavity mode and evolve to the lower level with a photon creation. When the photon loss happens, the left-handed enantiomer cannot be excited to the dressed state again by absorbing the photon, thus remaining in the lower level. Then, the chiralities of the enantiomers can be distinguished by measuring their final states. We take 1,2-propanediol molecules as an example to demonstrate the protocol, where the difference of the populations of the lower level for the left- and right-handed enantiomer approaches unity in a relatively short operation time. Numerical simulation results show that the scheme is insensitive to the influence of the phase drift and frequency mismatch. Therefore, the protocol may provide an alternative approach for chirality discrimination.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statements
The data that support the findings of this study are available in the article.
References
Fox, S.: Organic chemistry, 3rd edn. Jones and Bartlett, Sudbury, MA (2004)
Bruice, P.Y.: Organic chemistry, 5th edn. Pearson, Upper Saddle River, NJ (2006)
McMurry, J.E.: Organic chemistry, 7th edn. Brooks/Cole, Florence, KY (2007)
Woolley, R.G.: Quantum theory and molecular structure. Adv. Phys. 25, 27 (1976). https://doi.org/10.1080/00018737600101352
Harris, A.B., Kamien, R.D., Lubensky, T.C.: Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745 (1999). https://doi.org/10.1103/revmodphys.71.1745
Lorenz, H., Seidel-Morgenstern, A.: Processes to separate enantiomers. Angewandte Chemie Int Ed 53(5), 1218–1250 (2014). https://doi.org/10.1002/anie.201302823
Quack, M., Stohner, J., Willeke, M.: High-resolution spectroscopic studies and theory of parity violation in chiral molecules. Ann. Rev. Phys. Chem. 59, 741 (2008). https://doi.org/10.1146/annurev.physchem.58.032806.104511
Gal, J.: The discovery of stereoselectivity at biological receptors: Arnaldo piutti and the taste of the asparagine enantiomers-history and analysis on the 125th anniversary. Chirality 24, 959 (2012). https://doi.org/10.1002/chir.22071
Barrett, K.T., Metrano, A.J., Rablen, P.R., Miller, S.J.: Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509, 71 (2014). https://doi.org/10.1038/nature13189
Ma, R., Wang, B., Lu, S., Zhang, Y., Yin, L., Huang, J., Deng, S., Wang, Y., Yu, G.: Characterization of pharmaceutically active compounds in dongting lake, china: occurrence, chiral profiling and environmental risk. Sci. Total Environ. 557, 268 (2016). https://doi.org/10.1016/j.scitotenv.2016.03.053
Naaman, R., Paltiel, Y., Waldeck, D.H.: Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250 (2019). https://doi.org/10.1038/s41570-019-0087-1
Wasielewski, M.R., Forbes, M.D.E., Frank, N.L., Kowalski, K., Scholes, G.D., Yuen-Zhou, J., Baldo, M.A., Freedman, D.E., Goldsmith, R.H., Goodson, T., Kirk, M.L., McCusker, J.K., Ogilvie, J.P., Shultz, D.A., Stoll, S., Whaley, K.B.: Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490 (2020). https://doi.org/10.1038/s41570-020-0200-5
Bodenhöfer, K., Hierlemann, A., Seemann, J., Gauglitz, G., Koppenhoefer, B., Gpel, W.: Chiral discrimination using piezoelectric and optical gas sensors. Nature 387, 577 (1997). https://doi.org/10.1038/42426
Rikken, G.L.J.A., Raupach, E.: Enantioselective magnetochiral photochemistry. Nature 405, 932 (2000). https://doi.org/10.1038/35016043
Bielski, R., Tencer, M.: Absolute enantioselective separation: optical activity ex machina. J. Sep. Sci. 28, 2325 (2005). https://doi.org/10.1002/jssc.200500173
Cameron, R.P., Barnett, S.M., Yao, A.M.: Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014). https://doi.org/10.1088/1367-2630/16/1/013020
Yachmenev, A., Onvlee, J., Zak, E., Owens, A., Küpper, J.: Field-induced diastereomers for chiral separation. Phys. Rev. Lett. 123, 243202 (2019). https://doi.org/10.1103/physrevlett.123.243202
Li, X., Shapiro, M.: Theory of the optical spatial separation of racemic mixtures of chiral molecules. J. Chem. Phys. 132, 194315 (2010). https://doi.org/10.1063/1.3429884
Eilam, A., Shapiro, M.: Spatial separation of dimers of chiral molecules. Phys. Rev. Lett. 110, 213004 (2013). https://doi.org/10.1103/physrevlett.110.213004
Bradshaw, D.S., Andrews, D.L.: Laser optical separation of chiral molecules. Opt. Lett. 40, 677 (2015). https://doi.org/10.1364/ol.40.000677
Liu, B., Ye, C., Sun, C.P., Li, Y.: Spatial enantioseparation of gaseous chiral molecules. Phys. Rev. A 104, 013113 (2021). https://doi.org/10.1103/physreva.104.013113
Shapiro, M., Frishman, E., Brumer, P.: Coherently controlled asymmetric synthesis with achiral light. Phys. Rev. Lett. 84, 1669 (2000). https://doi.org/10.1103/physrevlett.84.1669
Brumer, P., Frishman, E., Shapiro, M.: Principles of electric-dipole-allowed optical control of molecular chirality. Phys. Rev. A 65, 015401 (2001). https://doi.org/10.1103/physreva.65.015401
Li, Y., Bruder, C.: Dynamic method to distinguish between left- and right-handed chiral molecules. Phys. Rev. A 77, 015403 (2008). https://doi.org/10.1103/physreva.77.015403
Leibscher, M., Giesen, T.F., Koch, C.P.: Principles of enantio-selective excitation in three-wave mixing spectroscopy of chiral molecules. J. Chem. Phys. 151, 014302 (2019). https://doi.org/10.1063/1.5097406
Hoki, K., Kröner, D., Manz, J.: Selective preparation of enantiomers from a racemate by laser pulses: model simulation for oriented atropisomers with coupled rotations and torsions. Chem. Phys. 267, 59 (2001). https://doi.org/10.1016/s0301-0104(01)00264-6
Kröner, D., Shibl, M.F., González, L.: Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment. Chem. Phys. Lett. 372, 242 (2003). https://doi.org/10.1016/s0009-2614(03)00407-x
Ahuja, S.: (ed.): Chiral Separation Methods for Pharmaceutical and Biotechnological Products. Wiley, Nashville, TN. https://www.wiley.com/en-us/Chiral+Separation+Methods+for+Pharmaceutical+and+Biotechnological+Products-p-9781118097755 (2011)
Král, P., Shapiro, M.: Cyclic population transfer in quantum systems with broken symmetry. Phys. Rev. Lett. 87, 183002 (2001). https://doi.org/10.1103/physrevlett.87.183002
Král, P., Thanopulos, I., Shapiro, M., Cohen, D.: Two-step enantio-selective optical switch. Phys. Rev. Lett. 90, 033001 (2003). https://doi.org/10.1103/physrevlett.90.033001
Torosov, B.T., Drewsen, M., Vitanov, N.V.: Efficient and robust chiral resolution by composite pulses. Phys. Rev. A 101, 063401 (2020). https://doi.org/10.1103/physreva.101.063401
Torosov, B.T., Drewsen, M., Vitanov, N.V.: Chiral resolution by composite raman pulses. Phys. Rev. Research 2, 043235 (2020). https://doi.org/10.1103/PhysRevResearch.2.043235
Vitanov, N.V., Drewsen, M.: Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity. Phys. Rev. Lett. 122, 173202 (2019). https://doi.org/10.1103/physrevlett.122.173202
Wu, J.-L., Wang, Y., Song, J., Xia, Y., Su, S.-L., Jiang, Y.-Y.: Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths. Phys. Rev. A 100, 043413 (2019). https://doi.org/10.1103/physreva.100.043413
Ye, C., Zhang, Q., Chen, Y.-Y., Li, Y.: Effective two-level models for highly efficient inner-state enantioseparation based on cyclic three-level systems of chiral molecules. Phys. Rev. A 100, 043403 (2019). https://doi.org/10.1103/physreva.100.043403
Wu, J.-L., Wang, Y., Han, J.-X., Wang, C., Su, S.-L., Xia, Y., Jiang, Y., Song, J.: Two-path interference for enantiomer-selective state transfer of chiral molecules. Phys. Rev. Appl 13, 044021 (2020). https://doi.org/10.1103/physrevapplied.13.044021
Wu, J.-L., Wang, Y., Su, S.-L., Xia, Y., Jiang, Y., Song, J.: Discrimination of enantiomers through quantum interference and quantum zeno effect. Opt. Express 28, 33475 (2020). https://doi.org/10.1364/oe.404089
Kang, Y.-H., Shi, Z.-C., Song, J., Xia, Y.: Effective discrimination of chiral molecules in a cavity. Opt. Lett. 45, 4952 (2020). https://doi.org/10.1364/ol.398859
Liu, B., Ye, C., Sun, C.P., Li, Y.: Spatial enantioseparation of gaseous chiral molecules. Phys. Rev. A 104, 013113 (2021). https://doi.org/10.1103/physreva.104.013113
Guo, Y., Gong, X., Ma, S., Shu, C.-C.: Cyclic three-level-pulse-area theorem for enantioselective state transfer of chiral molecules. Phys. Rev. A 105, 013102 (2022). https://doi.org/10.1103/physreva.105.013102
Kuklinski, J.R., Gaubatz, U., Hioe, F.T., Bergmann, K.: Adiabatic population transfer in a three-level system driven by delayed laser pulses. Phys. Rev. A 40, 6741 (1989). https://doi.org/10.1103/physreva.40.6741
Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998). https://doi.org/10.1103/revmodphys.70.1003
Vitanov, N.V., Rangelov, A.A., Shore, B.W., Bergmann, K.: Stimulated raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017). https://doi.org/10.1103/revmodphys.89.015006
Daems, D., Ruschhaupt, A., Sugny, D., Guérin, S.: Robust quantum control by a single-shot shaped pulse. Phys. Rev. Lett. 111, 050404 (2013). https://doi.org/10.1103/physrevlett.111.050404
Genov, G.T., Vitanov, N.V.: Dynamical suppression of unwanted transitions in multistate quantum systems. Phys. Rev. Lett. 110, 133002 (2013). https://doi.org/10.1103/physrevlett.110.133002
Torosov, B.T., Vitanov, N.V.: Smooth composite pulses for high-fidelity quantum information processing. Phys. Rev. A 83, 053420 (2011). https://doi.org/10.1103/physreva.83.053420
Shi, Z.-C., Wu, H.-N., Shen, L.-T., Song, J., Xia, Y., Yi, X.X., Zheng, S.-B.: Robust single-qubit gates by composite pulses in three-level systems. Phys. Rev. A 103, 052612 (2021). https://doi.org/10.1103/physreva.103.052612
Shi, Z.-C., Zhang, C., Ran, D., Xia, Y., Ianconescu, R., Friedman, A., Yi, X.X., Zheng, S.-B.: Composite pulses for high fidelity population transfer in three-level systems. New J. Phys. 24, 023014 (2022). https://doi.org/10.1088/1367-2630/ac48e7
Zhang, C., Liu, Y., Shi, Z.-C., Song, J., Xia, Y., Zheng, S.-B.: Robust population inversion in three-level systems by composite pulses. Phys. Rev. A 105, 042414 (2022). https://doi.org/10.1103/physreva.105.042414
Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303 (2009). https://doi.org/10.1088/1751-8113/42/36/365303
Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010). https://doi.org/10.1103/physrevlett.105.123003
Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013). https://doi.org/10.1103/physrevlett.111.100502
Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., Campo, A., Guéry-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Chapter 2 - shortcuts to adiabaticity. Adv. Atom. Mol. Opt. Phys. 62, 117–169 (2013)
Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019). https://doi.org/10.1103/RevModPhys.91.045001
Kang, Y.-H., Chen, Y.-H., Wang, X., Song, J., Xia, Y., Miranowicz, A., Zheng, S.-B., Nori, F.: Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Phys Rev Res 4, 1 (2022). https://doi.org/10.1103/physrevresearch.4.013233
Kang, Y.-H., Song, J., Xia, Y.: Error-resistant nonadiabatic binomial-code geometric quantum computation using reverse engineering. Opt. Lett. 47(16), 4099 (2022). https://doi.org/10.1364/ol.469968
Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005). https://doi.org/10.1103/physrevlett.95.087001
Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009). https://doi.org/10.1038/nphys1342
Vollbrecht, K.G.H., Muschik, C.A., Cirac, J.I.: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011). https://doi.org/10.1103/physrevlett.107.120502
Shao, X.Q., Wu, J.H., Yi, X.X., Long, G.-L.: Dissipative preparation of steady greenberger-horne-zeilinger states for rydberg atoms with quantum zeno dynamics. Phys. Rev. A 96, 062315 (2017). https://doi.org/10.1103/physreva.96.062315
Chen, Y.-H., Shi, Z.-C., Song, J., Xia, Y., Zheng, S.-B.: Coherent control in quantum open systems: an approach for accelerating dissipation-based quantum state generation. Phys. Rev. A 96, 043853 (2017). https://doi.org/10.1103/physreva.96.043853
Qin, W., Wang, X., Miranowicz, A., Zhong, Z., Nori, F.: Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators. Phys. Rev. A 96, 012315 (2017). https://doi.org/10.1103/physreva.96.012315
Wang, Y., Hu, C.-S., Shi, Z.-C., Huang, B.-H., Song, J., Xia, Y.: Accelerated and noise-resistant protocol of dissipation-based knill-laflamme-milburn state generation with lyapunov control. Ann. Phys. 531, 1900006 (2019). https://doi.org/10.1002/andp.201900006
Liu, Y.-C., Xiao, Y.-F., Luan, X., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013). https://doi.org/10.1103/physrevlett.110.153606
Lü, X.-Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori, F.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015). https://doi.org/10.1103/PhysRevLett.114.093602
Su, S.-L., Guo, Q., Wang, H.-F., Zhang, S.: Simplified scheme for entanglement preparation with rydberg pumping via dissipation. Phys. Rev. A 92, 022328 (2015). https://doi.org/10.1103/physreva.92.022328
Patterson, D., Schnell, M., Doyle, J.M.: Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497(7450), 475–477 (2013). https://doi.org/10.1038/nature12150
Domingos, S.R., Pérez, C., Schnell, M.: Sensing chirality with rotational spectroscopy. Ann. Rev. Phys. Chem. 69, 499 (2018). https://doi.org/10.1146/annurev-physchem-052516-050629
Pérez, C., Steber, A.L., Krin, A., Schnell, M.: State-specific enrichment of chiral conformers with microwave spectroscopy. J. Phys. Chem. Lett. 9, 4539 (2018). https://doi.org/10.1021/acs.jpclett.8b01815
Hollas, J.M.: Modern Spectroscopy. Wiley, Cambridge (2004)
Atkins, P.W., Friedman, R.S.: Molecular quantum mechanics. Oxford University Press, Oxfordshire (2011)
McHale, J.L.: Molecular spectroscopy. CRC Press, Boca Raton (2017)
Lovas, F.J., Plusquellic, D.F., Pate, B.H., Neill, J.L., Muckle, M.T., Remijan, A.J.: Microwave spectrum of 1, 2-propanediol. J. Mol. Spectrosc. 257, 82 (2009). https://doi.org/10.1016/j.jms.2009.06.013
Lu, W., Zhao, Y., Barker, P.F.: Cooling molecules in optical cavities. Phys. Rev. A 76, 013417 (2007). https://doi.org/10.1103/PhysRevA.76.013417
Eibenberger, S., Doyle, J., Patterson, D.: Enantiomer-specific state transfer of chiral molecules. Phys. Rev. Lett. 118, 123002 (2017). https://doi.org/10.1103/physrevlett.118.123002
Pérez, C., Steber, A.L., Domingos, S.R., Krin, A., Schmitz, D., Schnell, M.: Coherent enantiomer-selective population enrichment using tailored microwave fields. Angew. Chem. Int. Ed. 56, 12512 (2017). https://doi.org/10.1002/anie.201704901
Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum zeno dynamics. Physics Letters A 275(1–2), 12–19 (2000). https://doi.org/10.1016/s0375-9601(00)00566-1
Facchi, P., Pascazio, S.: Quantum zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002). https://doi.org/10.1103/PhysRevLett.89.080401
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045, 11874114, and 11674060, the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant 2020J06011, and the Project from Fuzhou University under Grant JG202001-2.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ding, WW., Lin, ZP., Kang, YH. et al. Effective chirality discrimination via dissipation dynamics. Quantum Inf Process 22, 350 (2023). https://doi.org/10.1007/s11128-023-04109-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04109-8