Skip to main content
Log in

Four-state continuous-variable quantum key distribution with a hybrid linear amplifier

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a modified four-state continuous variable quantum key distribution protocol is proposed by adding a hybrid linear amplifier to Bob’s output. The heralded hybrid linear amplifier is composed by an ideal deterministic linear amplifier and a probabilistic noiseless linear amplifier. The degradation of signal-to-noise ratio caused by deterministic linear amplifier during the amplification of quantum light states can be surmounted by the probabilistic amplification process. The hybrid linear amplifier allows us to tune between the regimes of high gain or high noise reduction and control the trade-off between the amplification coefficient and a finite heralding probability flexibly. We examine how the new protocol is affected by the hybrid amplifier’s G and g parameters. By adjusting the characteristics of the hybrid linear amplifier, it is possible to optimize the key at a specific distance. In order to improve the simulation’s reality value, we take into account the role of finite-size while examining the key rate and simulation. The application for the hybrid linear amplifier is increased by its use in the four-state protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  3. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)

    Article  ADS  Google Scholar 

  4. Dias, J., Ralph, T.C.: Quantum repeaters using continuous-variable teleportation. Phys. Rev. A 95(2), 022312 (2017)

    Article  ADS  Google Scholar 

  5. Madsen, L.S., Usenko, V.C., Lassen, M., et al.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012)

    Article  ADS  Google Scholar 

  6. Weedbrook, C., Pirandola, S., Garciapatron, R., et al.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621–669 (2012)

    Article  ADS  Google Scholar 

  7. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  8. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

    Article  ADS  Google Scholar 

  9. Sarmiento, S., Etcheverry, S., Aldama, J., López, I.H., Vidarte, L.T., Xavier, G.B., Nolan, D.A., Stone, J.S., Li, M.J., Loeber, D., Pruneri, V.: Continuous-variable quantum key distribution over a 15 km multi-core fiber. New J. Phys. 2022(6)

  10. Yu, C., Li, Y., Ding, J., Mao, Y., Guo, Y.: Photon subtraction-based continuous-variable measurement-device-independent quantum key distribution with discrete modulation over a fiber-to-water channel? Commun. Theor. Phys. 03, 40–47 (2022)

    Google Scholar 

  11. Wang, Z., et al.: Quantum key distribution by drone. In: Proceedings of 2021 5th International Conference on Electrical, Automation and Mechanical Engineering (EAME2021), pp. 585–589. IOP Publishing (2021)

  12. Physics; Investigators at Central South University Detail Findings in Physics (Unidimensional Continuous-variable Quantum Key Distribution With Discrete Modulation). News of Science (2020)

  13. Madsen Lars, S., Usenko Vladyslav, C., Mikael, L., Radim, F., Andersen Ulrik, L.: Continuous variable quantum key distribution with modulated entangled states.. Nat. Commun. 3(9) (2012)

  14. Yue, Z.C., Jun, Z.Z.: Entanglement-based quantum key distribution with untrusted third party. Quantum Inf. Process. 20(4) (2021)

  15. Wang, T., Yu, S., Zhang, Y.-C., Gu, W.: A generalized entanglement-based scheme for Gaussian-modulated coherent state continuous-variable quantum key distribution. J. Phys. B Atom. Mol. Opt. Phys. Inst. Phys. J. 48(13) (2015)

  16. Hiroki, T., Ken-Ichi, H., Kiyoshi, T., Hiroshi, F., Tai, T., Toshifumi, W., Koji, Y., Sei-Ichi, I.: Long-distance entanglement-based quantum key distribution experiment using practical detectors. Opt. Express 18(16) (2010)

  17. Frédéric, G.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94(2) (2005)

  18. Panagiotis, P., Stefano, P.: Continuous-variable quantum cryptography with discrete alphabets: composable security under collective Gaussian attacks. Phys. Rev. Res. 3(1) (2021)

  19. Leverrier, A., Grangier, P.: Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 81(6) (2010)

  20. Stefano, P., Braunstein Samuel, L., Seth, L.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101(20) (2008)

  21. Spyros, T., Nedasadat, H., Nathan, W., Ralph Timothy, C.: Teleportation-based collective attacks in Gaussian quantum key distribution. Phys. Rev. Res. 2(1) (2020)

  22. Photonics; Studies from Donghua University Provide New Data on Photonics (High-speed Reconciliation for Cvqkd Based On Spatially Coupled Ldpc Codes). Sci. Lett. (2019)

  23. Zhang, W., Li, R., Wang, Y., Wang, X., Tian, L., Zheng, Y.: Security analysis of continuous variable quantum key distribution based on entangled states with biased correlations. Opt. Express 29(14) (2021)

  24. Madsen Lars, S., Usenko Vladyslav, C., Mikael, L., Radim, F., Andersen Ulrik, L.: Continuous variable quantum key distribution with modulated entangled states.. Nat. Commun. 3(9) (2012)

  25. Zhang, H., Fang, J., He, G.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86(2), 22338 (2012)

    Article  ADS  Google Scholar 

  26. Mao, Y., Liu, Q., Ying, G., et al.: Four-state modulation in middle of a quantum channel for continuous-variable quantum key distribution protocol with noiseless linear amplifier. Chin. Phys. Lett. 36(10), 5 (2019)

    Article  Google Scholar 

  27. Haw, J., Zhao, J., Dias, J., et al.: Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states. Nat. Commun. 7, 13222 (2016)

    Article  ADS  Google Scholar 

  28. Zhao, J., Dias, J., Haw, J.Y., et al.: Quantum enhancement of signal-to-noise ratio with a heralded linear amplifier. Optica (2017). https://doi.org/10.1364/OPTICA.4.001421

    Article  Google Scholar 

  29. Jian, Z., Ronghua, et al.: Enhancing continuous variable quantum key distribution with a heralded hybrid linear amplifier. J. Phys. A Math. Gen. 52(24), 245303–245303 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62201620, 61872390, 61972418), the Outstanding Youth Program of Education Department of Hunan Province (Grant Nos. 21B0228, 22B0267), the Changsha Municipal Natural Science Foundation (Grant No. kq2202293), Natural Science Foundation (Young Program) of Hunan Province of China (Grant No. 2022JJ40878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wu, L., Feng, Y. et al. Four-state continuous-variable quantum key distribution with a hybrid linear amplifier. Quantum Inf Process 22, 356 (2023). https://doi.org/10.1007/s11128-023-04111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04111-0

Keywords

Navigation