Skip to main content
Log in

Asymmetric bidirectional cyclic controlled quantum teleportation in noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper is aimed to design a protocol which enable asymmetric exchange of quantum states between every two adjacent communicating parties under the supervision of a controller in circular quantum communication and analyze how the noise environment affects the process of this protocol. We propose a novel protocol for four-party asymmetric bidirectional cyclic controlled quantum teleportation based on multi-output quantum teleportation, utilizing a seventeen-qubit entangled state as the quantum channel. Moreover, we extended the proposed four-party scheme from three communicators to \(m(m>3)\) communicators, providing flexibility for each communicator to choose one of the two distinct multi-output modes for communication. Additionally, the quantum circuit was designed for experimental implementation of the protocol on the IBM Quantum platform. Lastly, the four-party scheme is analyzed in four noisy environments with bit-flip noise, phase-flip noise, amplitude damping and phase-damping. Furthermore, we give a comparison with previous similar schemes in terms of intrinsic efficiency and achieved method, which illustrates the superiority of our protocol. Regarding experimental implementation, we successfully validated the accuracy and feasibility of the proposed four-party scheme. In the noise analysis, we discovered a correlation between the fidelity of teleported quantum states and both the parameter of the desired quantum state and the decoherence rate. This correlation is attributed to the inherent nature of the four types of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Date availability

Codes that support the experimental realization of four-party ABCCQT scheme are available from the author (544,692,060@qq.com) upon reasonable request.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lo, H.-K.: Classical communication cost in distributed quantum information processing: a generalization of quantum communication complexity. Phys. Rev. A. 62, 012313 (2000). https://doi.org/10.1103/PhysRevA.62.012313

    Article  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007). https://doi.org/10.1103/PhysRevLett.98.230501

    Article  ADS  Google Scholar 

  5. Arnon-Friedman, R., Dupuis, F., Fawzi, O., Renner, R., Vidick, T.: Practical device-independent quantum cryptography via entropy accumulation. Nat. Commun. 9, 459 (2018). https://doi.org/10.1038/s41467-017-02307-4

    Article  ADS  Google Scholar 

  6. Bera, S., Gupta, S., Majumdar, A.S.: Device-independent quantum key distribution using random quantum states. Quant. Inf. Process. 22, 109 (2023). https://doi.org/10.1007/s11128-023-03852-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev. A. 65, 032302 (2002). https://doi.org/10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  8. Deng, F.-G., Long, G.L., Liu, X.-S.: A two-step quantum direct communication protocol using Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003). https://doi.org/10.1103/PhysRevA.68.042317

    Article  ADS  Google Scholar 

  9. Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67, 367–374 (2022). https://doi.org/10.1016/j.scib.2021.11.002

    Article  Google Scholar 

  10. Ying, J.-W., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B. 31, 120303 (2022). https://doi.org/10.1088/1674-1056/ac8f37

    Article  ADS  Google Scholar 

  11. Hong, Y.-P., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent three-party quantum secure direct communication. Quant. Inf. Process. 22, 111 (2023). https://doi.org/10.1007/s11128-023-03853-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Yang, C.-W., Lin, J., Wang, K.-L., Tsai, C.-W.: Cryptanalysis and improvement of a controlled quantum secure direct communication with authentication protocol based on five-particle cluster state. Quant. Inf. Process. 22, 196 (2023). https://doi.org/10.1007/s11128-023-03956-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Shen, S., Yuan, C., Zhang, Z., Yu, H., Zhang, R., Yang, C., Li, H., Wang, Z., Wang, Y., Deng, G., Song, H., You, L., Fan, Y., Guo, G., Zhou, Q.: Hertz-rate metropolitan quantum teleportation. Light Sci. Appl. 12, 115 (2023). https://doi.org/10.1038/s41377-023-01158-7

    Article  ADS  Google Scholar 

  14. Yan, Z., Jia, X.: Teleportation goes to Hertz rate. Light Sci. Appl. 12, 167 (2023). https://doi.org/10.1038/s41377-023-01216-0

    Article  ADS  Google Scholar 

  15. Peng, J.-Y., Tang, L., Yang, Z.: Deterministic hierarchical quantum operation sharing with five-qubit partially entangled states. Quant. Inf. Process. 22, 265 (2023). https://doi.org/10.1007/s11128-023-03963-w

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zhang, Z., Sang, Y.: Bidirectional quantum teleportation in multi-hop communication network. Quant. Inf. Process. 22, 201 (2023). https://doi.org/10.1007/s11128-023-03950-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Harraz, S., Cong, S., Nieto, J.J.: Optimal tripartite quantum teleportation protocol through noisy channels. Quant. Inf. Process. 22, 83 (2023). https://doi.org/10.1007/s11128-023-03830-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hassanpour, S., Houshmand, M.: Bidirectional quantum teleportation via entanglement swapping. In: 2015 23rd Iranian conference on electrical engineering, IEEE, pp. 501–503, Tehran, Iran (2015) doi: https://doi.org/10.1109/IranianCEE.2015.7146267

  19. Li, Y., Nie, L., Li, X., Sang, M.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016). https://doi.org/10.1007/s10773-016-2933-y

    Article  MATH  Google Scholar 

  20. Yu, Y., Zha, X.W., Li, W.: Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state. Quant. Inf. Process. 16, 41 (2017). https://doi.org/10.1007/s11128-016-1500-z

    Article  ADS  MATH  Google Scholar 

  21. Kalra, A.R., Gupta, N., Behera, B.K., Prakash, S., Panigrahi, P.K.: Demonstration of the No-Hiding theorem on the 5 Qubit IBM quantum computer in a category theoretic framework. Quant. Inf. Process. 18, 170 (2019). https://doi.org/10.1007/s11128-019-2288-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Roffe, J., Headley, D., Chancellor, N., Horsman, D., Kendon, V.: Protecting quantum memories using coherent parity check codes. Quant. Sci. Technol. 3, 035010 (2018). https://doi.org/10.1088/2058-9565/aac64e

    Article  ADS  Google Scholar 

  23. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial Life in an IBM quantum computer. Sci Rep. 8, 14793 (2018). https://doi.org/10.1038/s41598-018-33125-3

    Article  ADS  Google Scholar 

  24. Chen, Y.-X., Du, J., Liu, S.-Y., Wang, X.-H.: Cyclic quantum teleportation. Quant. Inf. Process. 16, 201 (2017). https://doi.org/10.1007/s11128-017-1648-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Qiao, Y., Sang, M., Nie, Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a Ten-Qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019). https://doi.org/10.1007/s10773-019-04041-7

    Article  MATH  Google Scholar 

  26. Zhao, N., Wu, T., Yu, Y., Pei, C.: A scheme for controlled cyclic asymmetric remote state preparation in noisy environment. Appl. Sci. 11, 1405 (2021). https://doi.org/10.3390/app11041405

    Article  Google Scholar 

  27. Zhou, R.-G., Ling, C.: Asymmetric cyclic controlled quantum teleportation by using Nine-Qubit entangled state. Int. J. Theor. Phys. 60, 3435–3459 (2021). https://doi.org/10.1007/s10773-021-04825-w

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, R.-G., Qian, C., Ian, H.: Cyclic and bidirectional quantum teleportation via pseudo multi-qubit states. IEEE Access. 7, 42445–42449 (2019). https://doi.org/10.1109/ACCESS.2019.2907963

    Article  Google Scholar 

  29. Jiang, S.-X., Zhou, R.-G., Xu, R., Luo, G.: Cyclic hybrid double-channel quantum communication via bell-state and GHZ-state in noisy environments. IEEE Access. 7, 80530–80541 (2019). https://doi.org/10.1109/ACCESS.2019.2923322

    Article  Google Scholar 

  30. Sun, S., Zhang, H.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quant. Inf Process. 19, 120 (2020). https://doi.org/10.1007/s11128-020-2619-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gong, L., Chen, X.-B., Xu, G., Chang, Y., Yang, Y.-X.: Multi-party controlled cyclic hybrid quantum communication protocol in noisy environment. Quant. Inf Process. 21, 375 (2022). https://doi.org/10.1007/s11128-022-03725-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sun, S., Zhang, H.: Double-direction quantum cyclic controlled remote state preparation of two-qubit states. Quant. Inf Process. 20, 211 (2021). https://doi.org/10.1007/s11128-021-03149-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zarmehi, F., Kochakzadeh, M.H., Abbasi-Moghadam, D., Talebi, S.: Efficient circular controlled quantum teleportation and broadcast schemes in the presence of quantum noises. Quant. Inf Process. 20, 175 (2021). https://doi.org/10.1007/s11128-021-03088-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ikram, M., Zhu, S.-Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A. 62, 022307 (2000). https://doi.org/10.1103/PhysRevA.62.022307

    Article  ADS  MathSciNet  Google Scholar 

  35. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004). https://doi.org/10.1038/nature02570

    Article  ADS  Google Scholar 

  36. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolski-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998). https://doi.org/10.1103/PhysRevLett.80.1121

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62172268 and Shanghai Science and Technology Project under Grant Nos. 21JC1402800 and 20040501500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 4, 5 and 6.

Table 4 Comparison of each quantum state on different number of shots
Table 5 Allocation status of entangled channels
Table 6 The relationship between Charlie’s unitary operation and the measurement results of Alice, Bob and David

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhou, RG. Asymmetric bidirectional cyclic controlled quantum teleportation in noisy environment. Quantum Inf Process 22, 376 (2023). https://doi.org/10.1007/s11128-023-04116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04116-9

Keywords

Navigation