Skip to main content
Log in

Decentralized continuous-variable quantum secret sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing (QSS) is a method that allows multiple users to obtain pieces of a secret key from a dealer, but the complete key can only be recovered if all users collaborate. However, the status of the dealer in the system brings potential security risks to the communication network. To solve this problem, we propose a decentralized quantum secret sharing (DQSS) scheme that allows any honest user in the system to become a dealer and send a partial key to other users through an insecure quantum channel. The position of the dealer in the user chain in this scheme is no longer limited to the end of the chain, but can be located at any position. This scheme can be realized with local local oscillator (LLO) using discretely modulated coherent states (DMCSs). With this approach, the multi-user quantum secret sharing scheme can be implemented with any honest user acting as a dealer in a quantum communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in the article.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  3. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999). (1829)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  5. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  6. Grice, W.P., Qi, B.: Quantum secret sharing using weak coherent states. Phys. Rev. A 100, 022339 (2019)

    Article  ADS  Google Scholar 

  7. Lau, H.-K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)

    Article  ADS  Google Scholar 

  8. Liao, Q., Liu, H., Gong, Y., Wang, Z., Peng, Q., Guo, Y.: Practical continuous-variable quantum secret sharing using plug-and-play dual-phase modulation. Opt. Express 30(3), 3876–3892 (2022)

    Article  ADS  Google Scholar 

  9. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

  10. Trapani, J., Teklu, B., Olivares, S., Paris, M.G.A.: Quantum phase communication channels in the presence of static and dynamical phase diffusion. Phys. Rev. A 92, 012317 (2015)

    Article  ADS  Google Scholar 

  11. Adnane, H., Teklu, B., Paris, M. G. A.: Quantum phase communication channels assisted by non-deterministic noiseless amplifiers. J. Opt. Soc. Am. B 36(11), 2938–2945 (2019)

  12. Rosati, M., Mari, A., Giovannetti, V.: Coherent-state discrimination via nonheralded probabilistic amplification. Phys. Rev. A 93, 062315 (2016)

    Article  ADS  Google Scholar 

  13. Teklu, B., Bina, M., Paris, M.G.A.: Noisy propagation of Gaussian states in optical media with finite bandwidth. Sci. Rep. 12, 11646 (2022). https://doi.org/10.1038/s41598-022-15865-5

    Article  ADS  Google Scholar 

  14. Teklu, B.: Continuous-variable entanglement dynamics in Lorentzian environment. Phys. Lett. A 432 (2022)

  15. Liao, Q., Liu, H., Zhu, L., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103, 032410 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics (2012)

  17. Huang, J.-Z., Weedbrook, C., Yin, Z.-Q., Wang, S., Li, H.-W., Chen, W., Guo, G.-C., Han, Z.-F.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 87, 062329 (2013)

    Article  ADS  Google Scholar 

  18. Ma, X.-C., Sun, S.-H., Jiang, M.-S., Liang, L.-M.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87, 052309 (2013)

    Article  ADS  Google Scholar 

  19. Huang, J.-Z., Kunz-Jacques, S., Jouguet, P., Weedbrook, C., Yin, Z.-Q., Wang, S., Chen, W., Guo, G.-C., Han, Z.-F.: Quantum hacking on quantum key distribution using homodyne detection. Phys. Rev. A 89, 032304 (2014)

    Article  ADS  Google Scholar 

  20. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87, 062313 (2013)

    Article  ADS  Google Scholar 

  21. Zhao, Y.J., Zhang, Y.C., Huang, Y.D., Xu, B.J., Yu, S., Guo, H.: Polarization attack on continuous-variable quantum key distribution. J. Phys. B: At. Mol. Opt. Phys. 52(1), 015501 (2018)

    Article  ADS  Google Scholar 

  22. Ren, S., Kumar, R., Wonfor, A., Tang, X., Penty, R., White, I.: Reference pulse attack on continuous variable quantum key distribution with local local oscillator under trusted phase noise. J. Opt. Soc. Am. B 36(3), 7–15 (2019)

    Article  Google Scholar 

  23. Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)

    Article  ADS  Google Scholar 

  24. Shao, Y., Wang, H., Pi, Y., Huang, W., Li, Y., Liu, J., Yang, J., Zhang, Y., Xu, B.: Phase noise model for continuous-variable quantum key distribution using a local local oscillator. Phys. Rev. A 104, 032608 (2021)

    Article  ADS  Google Scholar 

  25. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  26. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  27. Papanastasiou, P., Pirandola, S.: Continuous-variable quantum cryptography with discrete alphabets: composable security under collective gaussian attacks. Phys. Rev. Res. 3, 013047 (2021)

    Article  Google Scholar 

  28. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B: At. Mol. Opt. Phys. 42(11), 114014 (2009)

    Article  ADS  Google Scholar 

  29. Qi, B., Lim, C.C.W.: Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator. Phys. Rev. Appl. 9, 054008 (2018)

    Article  ADS  Google Scholar 

  30. Wang, T., Huang, P., Zhou, Y., Liu, W., Zeng, G.: Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator. Phys. Rev. A 97, 012310 (2018)

    Article  ADS  Google Scholar 

  31. Ghorai, S., Grangier, P., Diamanti, E., Leverrier, A.: Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X 9, 021059 (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their constructive suggestions. This work was supported by the National Natural Science Foundation of China (Grants No. 62101180), Hunan Provincial Natural Science Foundation of China (Grant No. 2022JJ30163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Liao.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Phase noise analyses

In this part, we will firstly introduce the LLO protocol and consider the phase noise. Then, we will analyze the change from partially untrusted noise to trusted noise caused by Bob (Dealer) end local calibration.

From the [16], the phase noise \(\xi _{\text {phase}}\) in LLO CV QKD can be expressed as

$$\begin{aligned} \xi _{\text {phase}}=2 V_{A}\left( 1-e^{-\frac{V_{\text {est}}}{2}}\right) , \end{aligned}$$
(A1)

where \(V_{A}\) denotes the modulation variance, \(V_{\textrm{est}}\) is the variance of the phase noise, which can be calculated by the real phase rotation value \(\theta _{S}\) and the estimated value \({\hat{\theta }}_{S}\)

$$\begin{aligned} V_{\textrm{est}}={\text {var}}\left( \theta _{S}-{\hat{\theta }}_{S}\right) . \end{aligned}$$
(A2)

We denote \(E_{\textrm{R}}\) as the amplitude of the reference pulse, \(\chi \) as the total noise variance from Alice’s input, T as the channel transmittance, \(\varepsilon _{0}\) as the channel excess noise of the phase reference, \(\mu \) as the detection efficiency, \(v_{\textrm{el}}\) as the electronics noise of the imperfect detector, and it consists of the following parts:

$$\begin{aligned} V_{\textrm{est}} = V_{\textrm{error}} + V_{\textrm{drift}} + V_{\textrm{channel}}; \end{aligned}$$
(A3)

then, we analyze the three part of Eq. (A3) independently.

\(V_{\textrm{error}}\) denotes the variance generated by the error between the real phase rotation value \(\theta _{{R}}\) and estimated value \({\hat{\theta }}_{R}\)

$$\begin{aligned} V_{\text {error}}={\text {var}}\left( \theta _{R}-{\hat{\theta }}_{R}\right) =\frac{\chi +1}{E_{R}^{2}} \end{aligned}$$
(A4)

where \(\chi \) is the total noise of phase reference can be calculated by

$$\begin{aligned} \chi =\frac{1}{T}-1+\varepsilon _{0}+\frac{2-\mu +2 v_{\textrm{el}}}{T \mu } \end{aligned}$$
(A5)

where first three items are the components of channel-added noise in CV QKD, and the last item denotes the heterodyne detector noise.

\(V_{\textrm{drift}}\) represents the variance of the relative phase drift between the two lasers between \(\varDelta T\)

$$\begin{aligned} V_{\textrm{drift}}=2 \pi \left( \varDelta v_{A}+\varDelta v_{B}\right) \varDelta T \end{aligned}$$
(A6)

where \(\varDelta v_A\) and \(\varDelta v_B\) correspond to the linewidths of the two free-running lasers.

\(V_{\textrm{channel}}\) represent the variance of the noise which is caused by the drift of phase accumulation between the signal pulse and the phase reference.

Therefore, when \(V_{\textrm{est}} \rightarrow 0\), the phase noise can be approximated as

$$\begin{aligned} \xi _{\text {phase}}&=V_{A} V_{\text {est}}=V_{A}\left( V_{\textrm{drift}}+V_{\text {channel}}+V_{\text {error}}\right) \nonumber \\&=\xi _{\textrm{drift}}+\xi _{\text {channel}}+\xi _{\text {error}}. \end{aligned}$$
(A7)

Furthermore, we will analyze the trusted noise after calibration. Since the excess noise \(\xi \) is a component element of the channel-added noise which is part of the total added noise, it can be calculated by

$$\begin{aligned} \xi =\xi _{\text {phase}}+\xi _{\text {rest}}, \end{aligned}$$
(A8)

Then, the total channel-added noise \(\chi _{\text {line}}\) can be calculated as

$$\begin{aligned} \chi _{\text {line}}=1 / T-1+\xi , \end{aligned}$$
(A9)

and the total detection-added noise \(\chi _{\text {het}}\) can be calculated as

$$\begin{aligned} \chi _{\text {het}}=\left( 2-\mu +2 v_{\textrm{el}}\right) / \mu . \end{aligned}$$
(A10)

Combined with the CV QKD noise calculation method, the total noise is

$$\begin{aligned} \chi _{\text {tot}}=\chi _{\text {line}}+\frac{\chi _{\text {het}}}{T} \end{aligned}$$
(A11)

Then, we try to distinguish the trusted part and the untrusted part among them. We regard the \(\chi _{\text {het}}\) is the trusted noise based on a well calibration of \(\mu \) and \(v_{\textrm{el}}\). Meanwhile, a part of the phase reference measurement noise \(\xi _{\textrm{error}}\) can be well-calibrated locally on Bob’s side so it can be regarded as trusted noise [17, 24].

According to (A11), the total noise of phase reference can be written as

$$\begin{aligned} \chi =\chi ^{\textrm{u}}+\frac{\chi ^{T}}{T} \end{aligned}$$
(A12)

where \(\chi ^{u}=1 / T-1+\varepsilon _{0}\), \(\chi ^{T}=\left( 2-\mu +2 v_{\textrm{el}}\right) / \mu \).

Combined (A4), (A5), (A7) and (A12), the measurement noise of phase reference can be written with the same form as

$$\begin{aligned} \xi _{\text {error}}=V_{A} V_{\text {error}}=\xi _{\text {error}}^{u}+\frac{\xi _{\text {error}}^{T}}{T}, \end{aligned}$$
(A13)

where

$$\begin{aligned} \xi _{\text {error}}^{u}&=V_{A}\left( \frac{\chi ^{u}+1}{E_{R}^{2}}\right) =V_{A}\left( \frac{1+T \varepsilon _{0}}{T E_{R}^{2}}\right) ,\end{aligned}$$
(A14)
$$\begin{aligned} \xi _{\text {error}}^{T}&=V_{A}\left( \frac{\chi ^{T}}{E_{R}^{2}}\right) =V_{A}\left( \frac{2-\mu +2 v_{\textrm{el}}}{\mu E_{R}^{2}}\right) . \end{aligned}$$
(A15)

In consequence, in the trusted phase noise situation, the total channel-added noise, the total detection-added noise and the total added noise can be written as

$$\begin{aligned} \chi _{\text {line}}^{T}&=\frac{1}{T}-1+\xi _{\text {tot}}^{T}, \end{aligned}$$
(A16)
$$\begin{aligned} \chi _{\text {het}}^{T}&=\frac{2-\mu -2 v_{\textrm{el}}}{\mu }+\xi _{\textrm{error}}^{T}, \end{aligned}$$
(A17)
$$\begin{aligned} \chi _{\text {tot}}^{T}&=\chi _{\text {line}}^{T}+\frac{\chi _{\text {het}}^{T}}{T}, \end{aligned}$$
(A18)

where \(\xi _{\textrm{tot}}^{T}=\xi _{\textrm{tot}}-\xi _{\textrm{error}}^{T} / T\) is the real excess noise.

With the scheme from [25], the \(V_{\textrm{drift}}\) and \(V_{\textrm{channel}}\) can be viewed as going to 0, thus Eq. (A7) can be derived as

$$\begin{aligned} \xi _{\text {phase}} \approx V_{A} V_{\text {error}}=\xi _{\text {error}}=V_{A}\left( \frac{\chi +1}{E_{R}^{2}}\right) . \end{aligned}$$
(A19)

Appendix B: Coherent states in discretely modulated CV QKD

A coherent states can be generalized to one with N quantum states \(\left| \alpha _{k}^{N}\right\rangle =\left| \alpha e^{i 2 k \pi / N}\right\rangle \), where \(k \in \{0,1, \ldots , N-1\}\) and \(\alpha \) is a positive number related to the modulation of the quantum state as \(V_{A} = 2\alpha ^2\).

In the prepare-and-measure (PM) version of discretely modulated CV QKD, Alice first selects a random bit string \({\textbf{a}}=\left( a_{0}, a_{1}, \ldots , a_{2 L-1}\right) \) of length 2L, and the coherent states are subsequently encoded according to the successive pairs of bit strings \({\textbf{a}}\) with the form \(\left| \alpha _{k}^{N}\right\rangle \), where \(k_l = 2a_{2l} + a_{2l+1}\). Alice sends these modulated coherent states to remote Bob through a lossy and noisy quantum channel. When Bob receives these states, he can apply a heterodyne detector to measure each output mode. The mixture state that Bob receives can be expressed by the following form:

$$\begin{aligned} \rho _{N}=\frac{1}{N} \sum _{k=1}^{N}\left| \alpha _{k}^{N}\right\rangle \left\langle \alpha _{k}^{N}\right| . \end{aligned}$$
(B1)

Note that the discrete modulation strategy of quadrature-phase-shift keying (QPSK) requires four nonorthogonal coherent states so that we have \(N=4\). After the measurement, Bob obtains a 2L string \({\textbf{c}}= \left( c_{0}, c_{1}, \ldots , c_{2L-1}\right) \in {\mathbb {R}}^{2L}\). This string can be transformed into a raw key of 2L bits \({\textbf{b}}=\left( b_{0}, b_{1}, \ldots , b_{2L-1}\right) \), given by [26]

$$\begin{aligned} \left( b_{2 l}, b_{2 l+1}\right) = {\left\{ \begin{array}{ll}(0,0) &{} \text {if}\; c_{2 l+1}<c_{2 l}, \quad c_{2 l+1} \geqslant -c_{2 l} \\ (0,1) &{} \text {if}\; c_{2 l+1} \geqslant c_{2 l}, c_{2 l+1}>-c_{2 l} \\ (1,0) &{} \text {if}\; c_{2 l+1}>c_{2 l}, c_{2 l+1} \leqslant -c_{2 l} \\ (1,1) &{} \text {if}\; c_{2 l+1} \leqslant c_{2 l}, c_{2 l+1}<-c_{2 l}\end{array}\right. } \end{aligned}$$
(B2)

Bob then broadcasts the absolute values of \(c_{2l} \pm c_{2l+1}\) through a classical authenticated channel. This side information allows Alice and Bob to turn the information reconciliation problem into a well-studied channel coding problem for the binary-input additive white noise Gaussian channel. After several postprocessing steps such as parameter estimation, reconciliation, and privacy amplification, Alice and Bob can establish a correlated sequence of a random secure key.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, R., Guo, Y., Wang, Y. et al. Decentralized continuous-variable quantum secret sharing. Quantum Inf Process 22, 368 (2023). https://doi.org/10.1007/s11128-023-04126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04126-7

Keywords

Navigation