Skip to main content
Log in

A multi-classification classifier based on variational quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The interaction between machine learning and quantum physics has given rise to an emerging frontier of quantum machine learning research. In this line, quantum classifiers have received significant attention recently as a quantum device designed to solve the classification problem in machine learning. In this paper, we propose a new variational quantum multi-class classifier that uses \(log_{2}N \) qubits to represent N labels, converts the labels into different quantum states, and optimizes the circuit parameters by the fidelity between the true label state and the output state. Our method effectively reduces the width of the circuit and lowers the number of auxiliary particles needed from N to \(log_{2}N\). We conducted simulation experiments on several datasets. On the MNIST handwritten digits dataset, we achieved 99.8% accuracy for 4 classifications and 97% for 8 classifications. On the CIFAR-10 dataset, we obtained 85.3% accuracy for 8 classifications. Finally, on the CIFAR-100 dataset, we reached 76% accuracy for 16 classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in the MNIST Database of handwritten digits and the CIFAR Image Database at http://yann.lecun.com/exdb/mnist/ and https://www.cs.toronto.edu/~kriz/cifar.html

Code availability

Further implementation details are available from the authors upon request.

References

  1. Chen, W., Liu, Y., Wang, W., Bakker, E.M., Georgiou, T., Fieguth, P., Liu, L., Lew, M.S.: Deep learning for instance retrieval: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

  2. Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond accuracy: Behavioral testing of nlp models with checklist. arXiv preprint arXiv:2005.04118 (2020)

  3. Kotkov, D., Wang, S., Veijalainen, J.: A survey of serendipity in recommender systems. Knowl.-Based Syst. 111(nov.1), 180–192 (2016)

    Article  Google Scholar 

  4. Das Sarma, S., Deng, D.L., Duan, L.M.: Machine learning meets quantum physics. Phys. Today 72(3), 48–54 (2019)

    Article  Google Scholar 

  5. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  ADS  Google Scholar 

  6. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  8. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  9. Havlíček, V., Córcoles, A., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  ADS  Google Scholar 

  10. Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)

    Article  ADS  Google Scholar 

  11. Gao, X., Zhang, Z.-Y., Duan, L.-M.: A quantum machine learning algorithm based on generative models. Sci. Adv. 4(12), 9004 (2018)

    Article  ADS  Google Scholar 

  12. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  13. Hu, L., Wu, S.-H., Cai, W., Ma, Y., Mu, X., Xu, Y., Wang, H., Song, Y., Deng, D.-L., Zou, C.-L., et al.: Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv. 5(1), 2761 (2019)

    Article  ADS  Google Scholar 

  14. Huang, H.-L., Du, Y., Gong, M., Zhao, Y., Wu, Y., Wang, C., Li, S., Liang, F., Lin, J., Xu, Y., et al.: Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 16(2), 024051 (2021)

    Article  ADS  Google Scholar 

  15. Wittek, P.: Quantum machine learning: what quantum computing means to data mining. Academic Press, Cambridge, Massachusetts (2014)

    MATH  Google Scholar 

  16. Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. Proc. R. Soc. A: Math., Phys. Eng. Sci. 474(2209), 20170551 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Schuld, M., Petruccione, F.: Supervised learning with quantum computers, vol. 17. Springer, Berlin, Heidelberg (2018)

    Book  MATH  Google Scholar 

  18. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 4812 (2018)

    Article  ADS  Google Scholar 

  19. Anschuetz, E.R., Kiani, B.T.: Quantum variational algorithms are swamped with traps. Nat. Commun. 13(1), 7760 (2022)

    Article  ADS  Google Scholar 

  20. Kübler, J., Buchholz, S., Schölkopf, B.: The inductive bias of quantum kernels. Adv. Neural. Inf. Process. Syst. 34, 12661–12673 (2021)

    Google Scholar 

  21. LaBorde, M.L., Rogers, A.C., Dowling, J.P.: Finding broken gates in quantum circuits: exploiting hybrid machine learning. Quantum Inf. Process. 19(8), 1–8 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heese, R., Bickert, P., Niederle, A.E.: Representation of binary classification trees with binary features by quantum circuits. Quantum 6, 676 (2022)

    Article  Google Scholar 

  23. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  24. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018)

  25. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  26. Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T., et al.: Noisy intermediate-scale quantum (NISQ) algorithms. arXiv preprint arXiv:2101.08448 (2021)

  27. Deutsch, I.H.: Harnessing the power of the second quantum revolution. PRX Quantum 1(2), 020101 (2020)

    Article  Google Scholar 

  28. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nature Reviews. Physics 3(9), 625–644 (2021)

    Google Scholar 

  29. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)

    Article  Google Scholar 

  30. Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Physical Review Research 1(3), 033063 (2019)

    Article  ADS  Google Scholar 

  31. Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. npj Quantum. Information 4(1), 1–8 (2018)

    Google Scholar 

  32. Bang, J., Lim, J., Kim, M.S., Lee, J.: Quantum Learning Machine (2008)

  33. Gammelmark, S., Mølmer, K.: Quantum learning by measurement and feedback. New J. Phys. 11(3), 033017 (2009)

    Article  ADS  Google Scholar 

  34. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhysics Letters) 119(6), 60002 (2017)

    Article  ADS  Google Scholar 

  35. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Information 5(1), 1–9 (2019)

    Article  Google Scholar 

  36. Rudolph, M.S., Toussaint, N.B., Katabarwa, A., Johri, S., Peropadre, B., Perdomo-Ortiz, A.: Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X 12(3), 031010 (2022)

    Google Scholar 

  37. Melnikov, A., Kordzanganeh, M., Alodjants, A., Lee, R.-K.: Quantum Machine Learning: from physics to software engineering (2023)

  38. Kenyhy Hancco-Quispe, J., Piero Borda-Colque, J., Torres-Cruz, F.: Quantum machine learning applied to the classification of diabetes. arXiv e-prints, 2301 (2022)

  39. Kölle, M., Giovagnoli, A., Stein, J., Mansky, M.B., Hager, J., Linnhoff-Popien, C.: Improving convergence for quantum variational classifiers using weight re-mapping. arXiv preprint arXiv:2212.14807 (2022)

  40. Yu, K., Zhang, X., Ye, Z., Guo, G.-D., Lin, S.: Quantum federated learning based on gradient descent. arXiv preprint arXiv:2212.12913 (2022)

  41. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), 032331 (2019)

    Article  ADS  Google Scholar 

  42. Li, J., Yang, X., Peng, X., Sun, C.-P.: Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett. 118(15), 150503 (2017)

    Article  ADS  Google Scholar 

  43. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)

    Article  ADS  Google Scholar 

  44. Sagingalieva, A., Kurkin, A., Melnikov, A., Kuhmistrov, D., Perelshtein, M., Melnikov, A., Skolik, A., Von Dollen, D.: Hyperparameter optimization of hybrid quantum neural networks for car classification. arXiv preprint arXiv:2205.04878 (2022)

  45. Perelshtein, M., Sagingalieva, A., Pinto, K., Shete, V., Pakhomchik, A., Melnikov, A., Neukart, F., Gesek, G., Melnikov, A., Vinokur, V.: Practical application-specific advantage through hybrid quantum computing. arXiv preprint arXiv:2205.04858 (2022)

  46. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput. 15(3–4), 318–358 (2015)

    Google Scholar 

  47. Zhou, N.-R., Liu, X.-X., Chen, Y.-L., Du, N.-S.: Quantum k-nearest-neighbor image classification algorithm based on kl transform. Int. J. Theor. Phys. 60, 1209–1224 (2021)

    Article  MATH  Google Scholar 

  48. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  49. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Science and Technology 4(4), 043001 (2019)

    Article  ADS  Google Scholar 

  50. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  51. Lecun, Y., Bottou, L.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  52. Yun, W.J., Baek, H., Kim, J.: Projection valued measure-based quantum machine learning for multi-class classification. arXiv preprint arXiv:2210.16731 (2022)

  53. Bokhan, D., Mastiukova, A.S., Boev, A.S., Trubnikov, D.N., Fedorov, A.K.: Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning. arXiv preprint arXiv:2203.15368 (2022)

  54. Chalumuri, A., Kune, R., Manoj, B.: A hybrid classical-quantum approach for multi-class classification. Quantum Inf. Process. 20(3), 1–19 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62172060), Sichuan Science and Technology Program (2022YFG0316, 2023ZHCG0004) and National Key R &D Plan(2022YFB3304303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfen Li.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Li, D., Tan, Y. et al. A multi-classification classifier based on variational quantum computation. Quantum Inf Process 22, 412 (2023). https://doi.org/10.1007/s11128-023-04151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04151-6

Keywords

Navigation