Skip to main content
Log in

Transmon-photon entanglement by engineering shortcuts with optimized drivings

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The generation of entangled states in an optimized way is crucial to quantum information science and technology. Here, we propose an effective scheme for rapidly creating the entangled states between a transmon qubit and microwave photons by the technique of shortcuts to adiabaticity. An artificial atom of transmon circuit is coupled to a quantized resonator and a classical driving. The transmon-photon entanglement can be fast induced by inversely engineering the invariant-based Rabi drivings. Comparatively, the present scheme not only reduces the driving number but also employs the Rabi drivings with constant amplitudes. Furthermore, the operation fidelities can be enhanced due to a shorter duration time. Our work could offer an optimized avenue towards fast and robust information processing with superconducting qubits in a cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    MATH  ADS  Google Scholar 

  2. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    ADS  Google Scholar 

  3. Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017)

    MathSciNet  ADS  Google Scholar 

  4. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)

    ADS  Google Scholar 

  5. Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Superconducting quantum computing: a review. Sci. China Inform. Sci. 63, 180501 (2020)

    MathSciNet  Google Scholar 

  6. He, K., Geng, X., Huang, R., Liu, J., Chen, W.: Quantum computation and simulation with superconducting qubits. Chin. Phys. B 30, 080304 (2021)

    Google Scholar 

  7. Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022)

    ADS  Google Scholar 

  8. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    ADS  Google Scholar 

  9. Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012)

    ADS  Google Scholar 

  10. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)

    ADS  Google Scholar 

  11. Haroche, S., Brune, M., Raimond, J.M.: From cavity to circuit quantum electrodynamics. Nat. Phys. 16, 243 (2020)

    Google Scholar 

  12. Blais, A., Grimsmo, A.L., Girvin, S.M., Wallraff, A.: Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)

    MathSciNet  ADS  Google Scholar 

  13. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    ADS  Google Scholar 

  14. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  15. Mirhosseini, M., Sipahigil, A., Kalaee, M., Painter, O.: Superconducting qubit to optical photon transduction. Nature 588, 599 (2020)

    ADS  Google Scholar 

  16. Hua, M., Tao, M.-J., Alsaedi, A., Hayat, T., Wei, H.-R., Deng, F.-G.: Bell-state generation on remote superconducting qubits with dark photons. Quantum Inf. Process. 17, 151 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  17. Song, C., Xu, K., Li, H., Zhang, Y.-R., Zhang, X., Liu, W., Guo, Q., Wang, Z., Ren, W., Hao, J., Feng, H., Fan, H., Zheng, D., Wang, D.-W., Wang, H., Zhu, S.-Y.: Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574 (2019)

    MathSciNet  ADS  Google Scholar 

  18. Zhong, Y., Chang, H.-S., Bienfait, A., Dumur, É., Chou, M.-H., Conner, C.R., Grebel, J., Povey, R.G., Yan, H., Schuster, D.I., Cleland, A.N.: Deterministic multi-qubit entanglement in a quantum network. Nature 590, 571 (2021)

    ADS  Google Scholar 

  19. Cervera-Lierta, A., Krenn, M., Aspuru-Guzik, A., Galda, A.: Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. 17, 024062 (2022)

    ADS  Google Scholar 

  20. Bao, S., Kleer, S., Wang, R., Rahmani, A.: Optimal control of superconducting gmon qubits using Pontryagin’s minimum principle: preparing a maximally entangled state with singular bang-bang protocols. Phys. Rev. A 97, 062343 (2018)

    ADS  Google Scholar 

  21. Egger, D.J., Ganzhorn, M., Salis, G., Fuhrer, A., Müller, P., Barkoutsos, P.. Kl.., Moll, N., Tavernelli, I., Filipp, S.: Entanglement generation in superconducting qubits using holonomic operations. Phys. Rev. Appl. 11, 014017 (2019)

    ADS  Google Scholar 

  22. Yan, R.-Y., Feng, Z.-B.: Controllable and accelerated generation of entangled states between two superconducting qubits in circuit QED. Opt. Laser Technol. 135, 106699 (2021)

    Google Scholar 

  23. Ye, Q.-Z., Liang, Z.-T., Zhang, W.-X., Pan, D.-J., Xue, Z.-Y., Yan, H.: Speedup of entanglement generation in hybrid quantum systems through linear driving. Phys. Rev. A 106, 012407 (2022)

    ADS  Google Scholar 

  24. Cárdenas-López, F.A., Retamal, J.C., Chen, X.: Shortcuts to adiabaticity in superconducting circuits for fast multi-partite state generation. Commun. Phys. 6, 167 (2023)

    Google Scholar 

  25. Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martinez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)

    MathSciNet  ADS  Google Scholar 

  26. Chen, X., Torrontegui, E., Muga, J.G.: Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    ADS  Google Scholar 

  27. Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)

    ADS  Google Scholar 

  28. Yan, Y., Li, Y., Kinos, A., Walther, A., Shi, C., Rippe, L., Moser, J., Kröll, S., Chen, X.: Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency. Opt. Express 27, 8267 (2019)

    ADS  Google Scholar 

  29. Zhao, Z.-Y., Yan, R.-Y., Feng, Z.-B.: Shortcut-based quantum gates on superconducting qubits in circuit QED. Chin. Phys. B 30, 088501 (2021)

    ADS  Google Scholar 

  30. Berry, M.V.: Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Giannelli, L., Arimondo, E.: Three-level superadiabatic quantum driving. Phys. Rev. A 89, 033419 (2014)

    ADS  Google Scholar 

  32. Mortensen, H.L., Sørensen, J.J.W.H., Mølmer, K., Sherson, J.F.: Fast state transfer in a \(\Lambda \)-system: a shortcut-to-adiabaticity approach to robust and resource optimized control. New J. Phys. 20, 025009 (2018)

    ADS  Google Scholar 

  33. Dong, X.-P., Lu, X.-J., Li, M., Zhao, Z.-Y., Feng, Z.-B.: Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving. Chin. Phys. B 30, 044214 (2021)

    ADS  Google Scholar 

  34. Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)

    ADS  Google Scholar 

  35. Yu, L., Xu, J., Wu, J.L., Ji, X.: Fast generating W state of three superconducting qubits via Lewis–Riesenfeld invariants. Chin. Phys. B 26, 060306 (2017)

    ADS  Google Scholar 

  36. Zhang, Z., Wang, T., Xiang, L., Yao, J., Wu, J., Yin, Y.: Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A 95, 042345 (2017)

    ADS  Google Scholar 

  37. Feng, Z.-B., Lu, X.-J., Li, M., Yan, R.-Y., Zhou, Y.-Q.: Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving. New J. Phys. 19, 123023 (2017)

    ADS  Google Scholar 

  38. Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Accelerating population transfer in a transmon qutrit via shortcuts to adiabaticity. Ann. Phys. (Berlin) 530, 1700351 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  39. Wang, T., Zhang, Z., Xiang, L., Jia, Z., Duan, P., Cai, W., Gong, Z., Zong, Z., Wu, M., Wu, J., Sun, L., Yin, Y., Guo, G.: The experimental realization of high-fidelity ‘shortcut-to-adiabaticity’ quantum gates in a superconducting Xmon qubit. New J. Phys. 20, 065003 (2018)

    ADS  Google Scholar 

  40. Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv. 5, eaau5999 (2019)

    ADS  Google Scholar 

  41. Yan, T., Liu, B.J., Xu, K., Song, C., Liu, S., Zhang, Z., Deng, H., Yan, Z., Rong, H., Huang, K., Yung, M.H., Chen, Y., Yu, D.: Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates. Phys. Rev. Lett. 122, 080501 (2019)

    ADS  Google Scholar 

  42. Chu, J., Li, D., Yang, X., Song, S., Han, Z., Yang, Z., Dong, Y., Zheng, W., Wang, Z., Yu, X., Lan, D., Tan, X., Yu, Y.: Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits. Phys. Rev. Appl. 13, 064012 (2020)

    ADS  Google Scholar 

  43. Yan, R.-Y., Feng, Z.-B.: Two-qubit state swap and entanglement creation in a superconducting circuit QED via Counterdiabatic Drivings. Adv. Quantum Technol. 3, 2000088 (2020)

    Google Scholar 

  44. Wang, X.M., Zhang, A.Q., Xu, P., Zhao, S.M.: Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics. Chin. Phys. B 30, 030307 (2021)

    ADS  Google Scholar 

  45. Yan, R.-Y., Feng, Z.-B., Li, M., Zhang, C.-L., Zhao, Z.-Y.: Speeding up the generation of entangled state between a superconducting qubit and cavity photons via counterdiabatic driving. Ann. Phys. (Berlin) 532, 1900613 (2020)

    MATH  ADS  Google Scholar 

  46. Mezzacapo, A., Lamata, L., Filipp, S., Solano, E.: Many-body interactions with tunable-coupling transmon qubits. Phys. Rev. Lett. 113, 050501 (2014)

    ADS  Google Scholar 

  47. Lu, X.-J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)

    ADS  Google Scholar 

  48. Yan, R.-Y., Li, M., Zhao, Z.Y., Lu, X.-J., Feng, Z.-B.: Non-leaky population transfer in a transmon artificial atom. Laser Phys. Lett. 15, 015210 (2018)

    ADS  Google Scholar 

  49. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    ADS  Google Scholar 

  50. Yan, R.-Y., Feng, Z.-B., Zhang, C.-L., Li, M., Lu, X.-J., Zhou, Y.-Q.: Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity. Laser Phys. Lett. 15, 115205 (2018)

    ADS  Google Scholar 

  51. Li, Y.-C., Chen, X.: Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counterdiabatic driving. Phys. Rev. A 94, 063411 (2016)

    ADS  Google Scholar 

  52. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    ADS  Google Scholar 

  53. Gambetta, J.M., Houck, A.A., Blais, A.: Superconducting qubit with Purcell protection and tunable coupling. Phys. Rev. Lett. 106, 030502 (2011)

    ADS  Google Scholar 

  54. Hoffman, A.J., Srinivasan, S.J., Gambetta, J.M., Houck, A.A.: Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling. Phys. Rev. B 84, 184515 (2011)

    ADS  Google Scholar 

  55. Premaratne, S.P., Wellstood, F.C., Palmer, B.S.: Microwave photon Fock state generation by stimulated Raman adiabatic passage. Nat. Commun. 8, 114148 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province (Grant No. 212300410388), Key Research Project in Universities of Henan Province (Grant No. 23B140010), Scientific Research Innovation Team of Xuchang University (Grant No. 2022CXTD005), and the “316” Project Plan of Xuchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bo Feng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZB., Yan, RY. Transmon-photon entanglement by engineering shortcuts with optimized drivings. Quantum Inf Process 22, 395 (2023). https://doi.org/10.1007/s11128-023-04152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04152-5

Keywords

Navigation