Skip to main content
Log in

XIRAC-Q: a near-real-time quantum operating system scheduling structure based on Shannon information theorem

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the race for quantum computing supremacy, the key factor lies in maximizing the number of stable qubits by far, as each additional qubit doubles the computing power. Namely, it makes sense various ecosystems of organizations and developers gravitate toward these extraordinarily expensive supercomputers. Concurrently, the drive to democratize quantum computing has given rise to cloud-based operating systems built upon classical models. However, a growing demand forecast underscores the need for executing an infinite stream of near-real-time quantum tasks accessible via the cloud. This vacancy represents a potential boundary between quantum and classical operating systems. To address this, a refinement method called XIRAC-Q is introduced, which harnesses the principles of information theory for optimization. By maximizing the entropy toleration of the system, our approach enhances overall performance, particularly as the number of processes and tasks approaches infinity. Unlike the limited literature that has explored information theory principles solely for task priority alignment in classical computers, yielding limited advantage, our work integrates information theory and entropy in the design cycle of quantum operating system infrastructure. This paper highlights the novel advantages offered by the proposed paradigm, encompassing improved performance, scalability, and adaptability, which are thoroughly explained and explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Additional data related to this paper may be requested from the author.

References

  1. Marella, S.T., Sai Parisa, H.S.K.: Introduction to quantum computing. In: Quantum Computing and Communications. IntechOpen (2020)

  2. Ding, Y., Chong, F.T.: Quantum Computer Systems: Research for Noisy Intermediate-Scale Quantum Computers. Morgan & Claypool Publishers, San Rafael (2020)

    Book  Google Scholar 

  3. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  4. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: A case for variability-aware policies for NISQ-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 987–999 (2019).

  5. Yetiş, H., Karaköse, M.: An improved and cost-reduced quantum circuit generator approach for image encoding applications. Quantum Inf Process 21, 203 (2022). https://doi.org/10.1007/s11128-022-03546-1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Kong, W., et al.: "Origin pilot: a quantum operating system for efficient usage of quantum resources" in Quantum Physics (2021). arXiv preprint http://arxiv.org/abs/2105.10730

  7. Soeken, M., et al.: Programming quantum computers using design automation. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 137–146. IEEE (2018).

  8. Hauser, M., Lechner, W.: ParityQC: the first architecture company for quantum optimization. https://pasquans.eu/parityqc (2021).

  9. Walls, C.: Embedded RTOS Design: Insights and Implementation. Newnes (2020)

    Google Scholar 

  10. Wang, K.C.: Embedded real-time operating systems. In: Embedded and Real-Time Operating Systems, pp. 401–475. Springer, Cham (2017).

  11. Deltaflow.OS, Riverlane to build radically new operating system for quantum computers. Riverlane product. https://www.riverlane.com/products (2022)

  12. Li, G., Ding, Y., Xie, Y.: Towards efficient superconducting quantum processor architecture design. In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 1031–1045 (2020).

  13. Xanadu (strawberryfields): Quantum computational advantage with 216 squeezed-state qubits. https://strawberryfields.ai/

  14. Heim, B., Soeken, M., Marshall, S., et al.: Quantum programming languages. Nat. Rev. Phys. 2, 709–722 (2020). https://doi.org/10.1038/s42254-020-00245-7

    Article  Google Scholar 

  15. Fu, X. et al.: eQASM: an executable quantum instruction set architecture. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 224–237. IEEE (2019)

  16. Min-Allah, N., Khan, S.U., Yongji, W.: Optimal task execution times for periodic tasks using nonlinear constrained optimization. J. Supercomput. 59(3), 1120–1138 (2012)

    Article  Google Scholar 

  17. Schmid, M., Mottok, J.: Investigation of scheduling algorithms for DAG tasks through simulations. In: ERTS2022 (2022)

  18. Latip, R., Idris, Z.: Highest response ratio next (HRRN) vs first come first served (FCFS) scheduling algorithm in grid environment. In: International Conference on Software Engineering and Computer Systems, pp. 688–693. Springer, Berlin (2011).

  19. Bouziane, R., Rohou, E., & Gamatié, A.: Partial worst-case execution time analysis. In: ComPAS: Conférence en Parallélisme, Architecture et Système, pp. 1–8 (2018)

  20. Fang, J., Zhang, R., Zhou, A.: Load Balance for Distributed Real-Time Computing Systems, vol. 13. World Scientific (2020)

    MATH  Google Scholar 

  21. Holmes, A, et al.: Nisq+: Boosting quantum computing power by approximating quantum error correction. In: 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 556–569. IEEE (2020)

  22. Sharma, R., Nitin.: Entropy, a new dynamics governing parameter in real time distributed system: a simulation study. Int. J. Parallel Emergent Distrib. Syst. 29(6), 562–586 (2014)

  23. Rincón, C.A., Cheng, A.M.: SITSA-RT: an information theory inspired real-time multiprocessor scheduler. In: 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC). IEEE (2018)

  24. Cheng, A.M.: Using information theory principles to schedule real-time tasks. In: 51st Annual Conference on Information Sciences and Systems (CISS). IEEE (2017).

  25. Zou, X., Cheng, A.M.: Real-time multiprocessor scheduling algorithm based on information theory principles. IEEE Embed. Syst. Lett. 9(4), 93–96 (2017)

    Article  Google Scholar 

  26. Li, S., et al.: Race-condition-aware and hardware-oriented task partitioning and scheduling using entropy maximization. IEEE Trans. Parallel Distrib. Syst. 29(7), 1589–1604 (2017)

    Article  Google Scholar 

  27. Sharma, R.: Visualization of information theoretic maximum entropy model in real-time distributed system. In: Third International Conference on Advances in Computing and Communications. IEEE (2013)

  28. He, S., et al.: Uncertainty analysis of race conditions in real-time systems. In: IEEE International Conference on Software Quality, Reliability and Security. IEEE (2015)

  29. Itoko, T., Imamichi, T.: Scheduling of Operations in Quantum Compiler. In: IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 337–344. IEEE (2020)

  30. Ferrari, D., Tavernelli, I., Amoretti, M.: Deterministic algorithms for compiling quantum circuits with recurrent patterns. Quantum Inf. Process. 20, 213 (2021). https://doi.org/10.1007/s11128-021-03150-9

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Davarzani, Z., et al.: A dynamic programming approach for distributing quantum circuits by bipartite graphs. Quantum Inf. Process. 19, 360 (2020). https://doi.org/10.1007/s11128-020-02871-7

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Hu, M., et al.: Scheduling periodic task graphs for safety-critical time-triggered avionic systems. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2294–2304 (2015)

    Article  ADS  Google Scholar 

  33. Giacomo Guerreschi, G., Park, J.: Gate scheduling for quantum algorithms. In: ArXiv e-prints (2017)

  34. Zafari, A., Larsson, E., Tillenius, M.: DuctTeip: an efficient programming model for distributed task-based parallel computing. Parallel Comput. 90, 102582 (2019)

    Article  MathSciNet  Google Scholar 

  35. Obata, A.: Seven Quantum Companies utilizing Ion Trap Technology to build the future of Quantum Computing. https://quantumzeitgeist.com/ (2022)

  36. Kiyani, A., Zirak, A.R., et al.: Designing of a quadrupole Paul ion trap. J Fusion Energy 30, 291–293 (2011). https://doi.org/10.1007/s10894-010-9369-9

    Article  ADS  Google Scholar 

  37. Wu, X.C., et al.: Tilt: achieving higher fidelity on a trapped ion linear-tape quantum computing architecture. In: IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 153–166. IEEE (2021)

  38. Webber, M., et al.: Efficient qubit routing for a globally connected trapped ion quantum computer. Adv. Quantum Technol. 3(8), 2000027 (2020)

    Article  Google Scholar 

  39. Schäfer, V., et al.: Fast quantum logic gates with trapped-ion qubits. Nature 555, 75–78 (2018). https://doi.org/10.1038/nature25737

    Article  ADS  Google Scholar 

  40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Technol. J. 358, 359 (1948)

    MathSciNet  Google Scholar 

  41. Linden, W., Ranftl, S.: The 40th international workshop on bayesian inference and maximum entropy methods in science and engineering. In: Physical Sciences Forum (2022). ISBN 978-3-0365-3200-4

  42. Khosravi, A., Najafi, M., Mohtashami, G.: A new lifetime distribution by maximizing entropy: properties and applications. Probab. Eng. Inf. Sci. (2023). https://doi.org/10.1017/S0269964823000062

    Article  Google Scholar 

  43. Gupta, R., Xia, R.: Maximal entropy approach for quantum state tomography. PRX QUANTUM 2, 010318 (2021)

    Article  Google Scholar 

  44. Gray, R.M.: Entropy and information theory, 2nd edn. Springer (2011)

    Book  MATH  Google Scholar 

  45. Scharfenaker, E., Jangho, Y.: Maximum entropy economics. Eur. Phys. J. Spec. Top. 229(9), 1577–1590 (2020)

    Article  Google Scholar 

  46. Bergou, J., et al.: Quantum information processing. Springer (2021)

    Book  MATH  Google Scholar 

  47. Hughes, A., et al.: Benchmarking a high-fidelity mixed-species entangling gate. Phys. Rev. Lett. 125, 080504 (2020)

    Article  ADS  Google Scholar 

  48. Cirac, J., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    Article  ADS  Google Scholar 

  49. Shahnawaz, A., et al.: Quantum state tomography with conditional generative adversarial networks. Phys. Rev. Lett. 127(14), 140502 (2021)

    Article  Google Scholar 

  50. Habibidavijani, M., Sanders, B.C.: Continuous-variable ramp quantum secret sharing with Gaussian states and operations. New J. Phys. 21(11), 113023 (2019)

    Article  MathSciNet  Google Scholar 

  51. Ghosh, R., Sen, A., Sengupta, K.: Ramp and periodic dynamics across non-Ising critical points. Phys. Rev. B 97(1), 014309 (2018)

    Article  ADS  Google Scholar 

  52. Alarcon, S. L. and Haverly, A.: Quantum programming paradigms: boson sampling vs qubit gates. In: Proceedings of SPIE, 12243, Photonics for Quantum, 1224304 (2022)

  53. Millette, P.A.: The Heisenberg Uncertainty Principle and the Nyquist-Shannon Sampling Theorem. Prog. Phys. 9(3), 9–14 (2013)

    Google Scholar 

  54. Klco, N., Savage, M.J.: Digitization of scalar fields for quantum computing. Phys. Rev. A 99(5), 052335 (2019)

    Article  ADS  Google Scholar 

  55. Najmi, A.H., Moon, T.K.: Advanced signal processing: a concise guide. McGraw-Hill Education (2020)

    Google Scholar 

  56. Gabor, D.: Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  57. Ricaud, B., Torrésani, B.: A survey of uncertainty principles and some signal processing applications. Adv. Comput. Math. 40(3), 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Dunbar, N.: ATmega328P hardware: timers and counters. In: Arduino Software Internals, pp. 417–492. Apress, Berkeley (2020).

  59. Schmüser, F., Janzing, D.: Quantum analog-to-digital and digital-to-analog conversion. Phys. Rev. A 72(4), 042324 (2005)

    Article  ADS  Google Scholar 

  60. Mitarai, K., Kitagawa, M., Fujii, K.: Quantum analog-digital conversion. Phys. Rev. A 99(1), 012301 (2019)

    Article  ADS  Google Scholar 

  61. Weitenberg, C., Simonet, J.: Tailoring quantum gases by Floquet engineering. Nat. Phys. 17(12), 1342–1348 (2021)

    Article  Google Scholar 

  62. Garcia-Escartin, J.C.: Quantum modulation against electromagnetic interference (2014). arXiv preprint http://arxiv.org/abs/1411.7358

  63. Karpov, O.V., et al.: Quantum digital AC waveform synthesizer based on pulse-width modulation method. J. Appl. Phys. 104(9), 093911 (2008)

    Article  ADS  Google Scholar 

  64. Golding, B., Dykman, M.I.: Acceptor-based silicon quantum computing (2003). arXiv preprint cond-mat/0309147

  65. Christianto, V., et al.: Acoustic priority: a new approach to quantum mechanics based on sound wave analogy, tessellation, and cellular automata representation. In: 4th International Conference on Materials Science and Materials Chemistry, Prague, Czech Republic (2021)

  66. Zirak, A.R., Gharibpour, H.: Using the distributed embedded system to monitor and control power distribution network. In: 1st Iranian CIRED Conference, Tehran (2015). https://civilica.com/doc/335932

  67. Gyongyosi, L., Imre, S., Nguyen, H.V.: A survey on quantum channel capacities. IEEE Commun. Surv. Tutor. 20(2), 1149–1205 (2018)

    Article  Google Scholar 

  68. Guccione, G., et al.: Connecting heterogeneous quantum networks by hybrid entanglement swapping. Sci. Adv. 6(22), eaba4508 (2020)

    Article  ADS  Google Scholar 

  69. Aliferis, P., Cross, A.W.: Subsystem fault tolerance with the Bacon-Shor code. Phys. Rev. Lett. 98(22), 220502 (2007)

    Article  ADS  Google Scholar 

  70. Pilch, J., Długopolski, J.: An FPGA-based real quantum computer emulator. J. Comput. Electron. 18(1), 329–342 (2019)

    Article  Google Scholar 

  71. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Zirak.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zirak, A. XIRAC-Q: a near-real-time quantum operating system scheduling structure based on Shannon information theorem. Quantum Inf Process 22, 403 (2023). https://doi.org/10.1007/s11128-023-04155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04155-2

Keywords

Navigation