Skip to main content

Advertisement

Log in

Secured shared authentication key with two-way clock synchronization over multiparty quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Authentication is a security function that ensures the system's proper security by identifying and verifying users. Despite the advantages of quantum computers, it is still difficult to enforce authentication on behalf of multiple quantum channel users without the involvement of a third party because present protocols only consider two parties involved in communication. Scalability becomes an issue as the number of parties engaged in the quantum network increases. In addition, an eavesdropper may disguise herself among numerous participants and take advantage of the circumstances to gather information. The authentication method should be used throughout the quantum data exchange process to ensure that the parties participating in the protocol are who they claim to be. The suggested protocol's implementation has been tested using a simulation written in Python. This research aims to propose a protocol for multiparty authentication procedures without the assistance of a third party. The result of the proposed protocol is expected to be a simple and reliable quantum experiment. Importantly, this protocol can establish an environment that is more secure in terms of authentication and allows numerous parties to communicate freely and openly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data and results are reported in the paper.

References

  1. Wang, M.M., Han, R.F., Gong, L.M.: Multiparty semiquantum key agreement without entanglement. Commun. Theor. Phys. 72(6), 065107 (2020). https://doi.org/10.1088/1572-9494/ab8a10

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Dutta, A., and Pathak, A.: “New protocols for quantum key distribution with explicit upper and lower bound on secret-key rate,” Dec. 2022, [Online]. Available: http://arxiv.org/abs/2212.13089

  3. Chen, G., Wang, Y., Jian, L., Zhou, Y., Liu, S.: Quantum identity authentication based on the extension of quantum rotation. EPJ Quantum Technol. 10(1), 1–8 (2023). https://doi.org/10.1140/epjqt/s40507-023-00170-5

    Article  Google Scholar 

  4. Majumdar, R., and Das, S.: “An evaluation of quantum authentication through systematic literature review,” 2021, https://doi.org/10.14722/usec.2021.23003

  5. Dutta, A., Pathak, A.: Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quantum Inf. Process. 22(1), 13 (2022). https://doi.org/10.1007/s11128-022-03767-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Dutta, A., Pathak, A.: A short review on quantum identity authentication protocols: how would Bob know that he is talking with Alice? Quantum Inf. Process. 21(11), 369 (2022). https://doi.org/10.1007/s11128-022-03717-0

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Harun, N.Z., Ahmad Zukarnain, Z., Hanapi, Z.M., Ahmad, I.: Multi-stage quantum secure direct communication using secure shared authentication key. Symmetry 12(9), 1481 (2020). https://doi.org/10.3390/sym12091481

    Article  ADS  Google Scholar 

  8. Chen, Y.: “Methods and apparatuses for authentication in quantum key distribution and or quantum data communication,” 2018

  9. Rao, B.D., Jayaraman, R.: A novel quantum identity authentication protocol without entanglement and preserving pre-shared key information. Quantum Inform. Process. 22(2), 92 (2023). https://doi.org/10.1007/s11128-023-03832-6

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Harun, N.Z., Zukarnain, Z.A., Hanapi, Z.M., Ahmad, I., Khodr, M.F.: Multiphoton quantum communication using multiple-beam concept in free space optical channel. Symmetry 13(1), 1–16 (2021). https://doi.org/10.3390/sym13010066

    Article  Google Scholar 

  11. Kumar, A., Saha, R., Conti, M., Kumar, G., Buchanan, W.J., Kim, T.H.: A comprehensive survey of authentication methods in internet-of-things and its conjunctions. J. Netw. Comput. Appl. 204, 103414 (2022). https://doi.org/10.1016/j.jnca.2022.103414

    Article  Google Scholar 

  12. Azahari, N.S.B., Harun, N.Z.B., Zukarnain, Z.B.A.: Quantum identity authentication for non-entanglement multiparty communication: A review, state of art and future directions. ICT Express. Korean Inst. Commun. Sci. (2023). https://doi.org/10.1016/j.icte.2023.02.010

    Article  Google Scholar 

  13. Wu, Y.T., Chang, H., Guo, G.D., Lin, S.: Multi-party quantum key agreement protocol with authentication. Int. J. Theor. Phys. 60(11), 4066–4077 (2021). https://doi.org/10.1007/s10773-021-04954-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, S., Chen, Z.K., Shi, R.H., Liang, F.Y.: A novel quantum identity authentication based on Bell states. Int. J. Theor. Phys. 59(1), 236–249 (2020). https://doi.org/10.1007/s10773-019-04319-w

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou, R.G., Huo, M., Hu, W., Zhao, Y.: Dynamic multiparty quantum secret sharing with a trusted party based on generalized GHZ state. IEEE Access 9, 22986–22995 (2021). https://doi.org/10.1109/ACCESS.2021.3055943

    Article  Google Scholar 

  16. Li, X., Zhang, K., Zhang, L., Zhao, X.: A new quantum multiparty simultaneous identity authentication protocol with the classical third-party. Entropy 24(4), 483 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  17. Kang, M.S., Heo, J., Hong, C.H., Yang, H.J., Han, S.W., Moon, S.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inform. Process. 17, 1–5 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yan, L., Zhang, S., Chang, Y., Sun, Z., Sheng, Z.: Quantum secure direct communication protocol with mutual authentication based on single photons and bell states. Comput. Mater. Continua 63(3), 1297–1307 (2020). https://doi.org/10.32604/CMC.2020.09873

    Article  Google Scholar 

  19. Das, N., Paul, G.: Cryptanalysis of quantum secure direct communication protocol with mutual authentication based on single photons and bell states. Europhys. Lett. 138(4), 48001 (2022)

    Article  ADS  Google Scholar 

  20. Kang, M.S., Choi, Y.H., Kim, Y.S., Cho, Y.W., Lee, S.Y., Han, S.W., Moon, S.: Quantum message authentication scheme based on remote state preparation. Phys. Scripta. 93(11), 115102 (2018). https://doi.org/10.1007/s11128-017-1681-0

    Article  ADS  Google Scholar 

  21. Kak, S.: Authentication using piggy bank approach to secure double-lock cryptography. (2014). https://arxiv.org/abs/1411.3645

  22. Li, H., Li, D., Zhang, X., Shou, G., Hu, Y., Liu, Y.: A security management architecture for time synchronization towards high precision networks. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3107203

    Article  Google Scholar 

  23. Zhou, N.R., Zhu, K.N., Bi, W., Gong, L.H.: Semi-quantum identification. Quantum Inform. Process. 18, 1–7 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Jiang, S.Q., Zhou, R.G., Hu, W.W.: Semi-quantum mutual identity authentication using bell states. Int. J. Theor. Phys. 60(9), 3353–3362 (2021). https://doi.org/10.1007/s10773-021-04911-z

    Article  MATH  Google Scholar 

  25. Zhu, H., Wang, L., Zhang, Y.: An efficient quantum identity authentication key agreement protocol without entanglement. Quantum Inform. Process. 19, 1–4 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Tao, Z., Chang, Y., Zhang, S., Dai, J., Li, X.: Two semi-quantum direct communication protocols with mutual authentication based on bell states. Int. J. Theor. Phys. 58(9), 2986–2993 (2019). https://doi.org/10.1007/s10773-019-04178-5

    Article  MATH  Google Scholar 

  27. Rodzi, N.S., Azahari, N.S., Harun, N.Z.: Protocol efficiency using multiple level encoding in quantum secure direct communication protocol. Int. J. Softw. Eng. Comput. Syst. 9(2), 105–118 (2023)

    Article  Google Scholar 

  28. Azahari, N. S., and Harun, N. Z.: “Quantum cryptography experiment using optical devices,” 2023. [Online]. Available: www.ijacsa.thesai.org

  29. Narula, L., Humphreys, T.E.: Requirements for secure clock synchronization. IEEE J. Select. Topics Signal Process. 12(4), 749–762 (2018). https://doi.org/10.1109/JSTSP.2018.2835772

    Article  ADS  Google Scholar 

  30. Kong, X., et al.: Demonstration of multiparty quantum clock synchronization. Quantum Inf. Process. 17(11), 1–17 (2018). https://doi.org/10.1007/s11128-018-2057-9

    Article  MathSciNet  MATH  Google Scholar 

  31. Nande, S.S., Paul, M., Senk, S., Ulbricht, M., Bassoli, R., Fitzek, F.H., Boche, H.: Quantum enhanced time synchronisation for communication network. Comput. Netw. 1(229), 109772 (2023). https://doi.org/10.1016/j.comnet.2023.109772

    Article  Google Scholar 

  32. Agnesi, C., et al.: Simple quantum key distribution with qubit-based synchronization and a self-compensating polarization encoder. Optica 7(4), 284 (2020). https://doi.org/10.1364/optica.381013

    Article  ADS  Google Scholar 

  33. Abushgra, A.A., Elleithy, K.M.: A shared secret key initiated by EPR authentication and Qubit transmission channels. IEEE Access 5, 17753–17763 (2017). https://doi.org/10.1109/ACCESS.2017.2741899

    Article  Google Scholar 

  34. Babar, Z., et al.: Duality of quantum and classical error correction codes: Design principles and examples. IEEE Commun. Surv. Tutorials 21(1), 970–1010 (2019). https://doi.org/10.1109/COMST.2018.2861361

    Article  Google Scholar 

  35. Chang, Y., Zhang, S., Yan, L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Chin. Sci. Bull. 59(23), 2835–2840 (2014). https://doi.org/10.1007/s11434-014-0333-3

    Article  Google Scholar 

  36. Azahari, N.S.B., Harun, N.Z.B., Zukarnain, Z.B.A.: Quantum identity authentication for non-entanglement multiparty communication: A review, state of art and future directions. ICT Express (2023). https://doi.org/10.1016/j.icte.2023.02.010

    Article  Google Scholar 

  37. Azahari, N.S.B., Harun, N.Z.B., Zulkarnain, Z.B.A.: Quantum identity authentication for non-entanglement multiparty communication: a review, state of art and future directions. ICT Express (2023). https://doi.org/10.1016/j.icte.2023.02.010

  38. Verma, P.K., El Rifai, M., Chan, K.W.: Multi-photon Quantum Secure Communication. Springer, Singapore (2019)

    Book  Google Scholar 

  39. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56(2), 1201 (1997)

    Article  ADS  Google Scholar 

  40. Ghilen, A., Bekmabrouk, H., and Bouallegue, R.: Classification of quantum authentication protocols and calculation of their complexity. IEEE, 2014

  41. Guedes, E. B., and de Assis, F. M.: “Quantum communication complexity of quantum authentication protocols,” May 2011, [Online]. Available: http://arxiv.org/abs/1105.5370

  42. Yao and Andrew, C. C.: “Quantum circuit complexity,” in Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, IEEE Computer Society, 1998, pp. 352–361

  43. Roell, J.: “Demystifying quantum gates — one Qubit at a time.” Accessed: Jan. 18, 2023. [Online]. Available: https://towardsdatascience.com/demystifying-quantum-gates-one-qubit-at-a-time-54404ed80640

  44. El-Latif, A.A.A., Abd-El-Atty, B., Hossain, M.S., Elmougy, S., Ghoneim, A.: Secure quantum steganography protocol for fog cloud internet of things. IEEE Access 6, 10332–10340 (2018). https://doi.org/10.1109/ACCESS.2018.2799879

    Article  Google Scholar 

  45. Rifai, El. et al., “Quantum secure communication using polarization hopping multistage protocols,” Ph.D. dissertation, School of Electrical and Computer Engineering, University of Oklahoma (2016)

  46. Jian, L., et al.: A survey on quantum cryptography. Chin. J. Electron. 27(2), 223–228 (2018). https://doi.org/10.1049/cje.2018.01.017

    Article  Google Scholar 

  47. Dutta, A., and Pathak, A.: “Collective attack free controlled quantum key agreement without quantum memory,” Aug. 2023, [Online]. Available: http://arxiv.org/abs/2308.05470

  48. Boyer, M., Liss, R., Mor, T.: Composable security against collective attacks of a modified BB84 QKD protocol with information only in one basis. Theor. Comput. Sci. 801, 96–109 (2020). https://doi.org/10.1016/j.tcs.2019.08.014

    Article  MathSciNet  MATH  Google Scholar 

  49. Mafu, M., Sekga, C., Senekane, M.: Security of bennett-brassard 1984 quantum-key distribution under a collective-rotation noise channel. Photonics (2022). https://doi.org/10.3390/photonics9120941

    Article  Google Scholar 

  50. Wu, L., Chen, Y.: Three-stage quantum cryptography protocol under collective-rotation noise. Entropy 17(5), 2919–2931 (2015). https://doi.org/10.3390/e17052919

    Article  ADS  Google Scholar 

  51. Li, L., Li, H., Li, C., Chen, X., Chang, Y., Yang, Y., Li, J.: The security analysis of E91 protocol in collective-rotation noise channel. Int. J. Distribut. Sensor Netw. 14(5), 1550147718778192 (2018). https://doi.org/10.1177/1550147718778192

    Article  Google Scholar 

  52. Li, J., Pan, Z., Zheng, J., Sun, F., Ye, X., Yuan, K.: The security analysis of quantum SAGR04 protocol in collective-rotation noise channel. Chin. J. Electron. 24, 689–693 (2015). https://doi.org/10.1049/cje.2015.10.005

    Article  Google Scholar 

  53. Harun, N.Z., Zukarnain, Z.A., Hanapi, Z.M., Ahmad, I.: Evaluation of parameters effect in multiphoton quantum key distribution over fiber optic. IEEE Access 6, 47699–47706 (2018). https://doi.org/10.1109/ACCESS.2018.2866554

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS/1/2021/ICT11/UTHM/03/1). We also want to thank the Government of Malaysia, which provided the MyBrain15 program, for sponsoring this work under the self-funded research grant and L00022 from the Ministry of Science, Technology, and Innovation (MOSTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Ziadah Harun.

Ethics declarations

Conflict of interest

There is no conflict of interest among authors.

Ethical approval

The submitted work is original and has not been published elsewhere in any form or language.

Information consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azahari, N.S., Harun, N.Z., Ramli, S.N. et al. Secured shared authentication key with two-way clock synchronization over multiparty quantum communication. Quantum Inf Process 22, 410 (2023). https://doi.org/10.1007/s11128-023-04158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04158-z

Keywords