Skip to main content
Log in

The origin of improving the fidelity of the joint remote state preparation of an arbitrary qubit state affected by amplitude-damping noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The averaged quantum fidelity (AQF) of the joint remote state preparation (JRSP) of an arbitrary qubit state affected by an amplitude-damping noise environment (ADNE) is expressed only in terms of the entanglement measure (EM), namely the channel EM and the EMs of the channel qubits with the noise environment. The origin of improving the AQF by choosing the appropriate free parameter of the channel’s initial state (IS) is identified. Compared to the IS of the channel, which is the maximally entangled state (MES), the improved AQF is not due to the amount of remaining entanglement of the channel, although this amount of entanglement increases the average fidelity of the protocol over classical. The improved AQF when choosing the channel’s IS as the optimal state is due to the sum of the squares of the EMs of the channel qubits with the environment, although this sum reduces protocol fidelity. When the noise strength (NS) acting on the qubits is equal, which protocol has the greater optimal AQF is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996). https://doi.org/10.1103/PhysRevLett.76.722

    Article  ADS  Google Scholar 

  2. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209 (2013). https://doi.org/10.1016/j.physleta.2013.10.012

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137 (2014). https://doi.org/10.1016/j.aop.2014.07.012

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Taketani, B.G., de Melo, F., de Matos Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301 (2012). https://doi.org/10.1103/PhysRevA.85.020301

    Article  ADS  Google Scholar 

  5. Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304(R) (2012). https://doi.org/10.1103/PhysRevA.86.020304

    Article  ADS  Google Scholar 

  6. Knoll, L.T., Schmiegelow, Ch.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014). https://doi.org/10.1103/PhysRevA.86.020304

    Article  ADS  Google Scholar 

  7. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000). https://doi.org/10.1103/PhysRevA.62.012311

    Article  ADS  Google Scholar 

  8. Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002). https://doi.org/10.1103/PhysRevA.65.022302

    Article  ADS  Google Scholar 

  9. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015). https://doi.org/10.1103/PhysRevA.92.012338

    Article  ADS  Google Scholar 

  10. Islam, A., Wang, A.M., Abliz, A.: Optimizing quantum teleportation and dense coding via mixed noise under non-Markovian approximation. Int. J. Theor. Phys. 60, 1225 (2021). https://doi.org/10.1007/s10773-021-04748-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Im, D.G., Lee, C.H., Kim, Y., et al.: Optimal teleportation via noisy quantum channels without additional qubit resources. NPJ Quantum Inf. 7, 86 (2021). https://doi.org/10.1038/s41534-021-00426-x

    Article  ADS  Google Scholar 

  12. Bai, C.M., Li, Z.H., Li, Y.M.: Improving fidelity of quantum secret sharing in noisy environments. Eur. Phys. J. D 72, 126 (2018). https://doi.org/10.1140/epjd/e2018-90055-5

    Article  ADS  Google Scholar 

  13. Huang, D., Huang, P., Lin, D., et al.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016). https://doi.org/10.1038/srep19201

    Article  ADS  Google Scholar 

  14. Chai, G., et al.: Suppressing excess noise for atmospheric continuous-variable quantum key distribution via adaptive optics approach. New J. Phys. 22, 103009 (2020). https://doi.org/10.1088/1367-2630/abb47c

    Article  MathSciNet  ADS  Google Scholar 

  15. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992). https://doi.org/10.1103/PhysRevLett.68.557

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Kwek, L.C., Cao, L., Luo, W., et al.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021). https://doi.org/10.1007/s43673-021-00017-0

    Article  ADS  Google Scholar 

  18. Liu, B., Xia, S., Xiao, D., et al.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65, 240312 (2022). https://doi.org/10.1007/s11433-021-1843-7

    Article  ADS  Google Scholar 

  19. Zijian, L., Kejin, W.: Improving parameter optimization in decoy-state quantum key distribution. Quantum Eng. 2022, 9717591 (2022). https://doi.org/10.1155/2022/9717591

    Article  Google Scholar 

  20. Long, G.L., Liu, X.S.: Quantum secure direct communication. Phys. Rev. A 65, 032302 (2002). https://doi.org/10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  21. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003). https://doi.org/10.1103/PhysRevA.68.042317

    Article  ADS  Google Scholar 

  22. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022). https://doi.org/10.1007/s11433-021-1863-9

    Article  ADS  Google Scholar 

  23. Liu, X., Luo, D., Lin, G., et al.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65, 120311 (2022). https://doi.org/10.1007/s11433-022-1976-0

    Article  ADS  Google Scholar 

  24. Svetoslav, S.I., Nikolay, V.V.: High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses. Opt. Lett. 36, 1275 (2011). https://doi.org/10.1364/OL.36.001275

    Article  Google Scholar 

  25. Xu, H., Song, X.K., Wang, D., et al.: Quantum sensing of control errors in three-level systems by coherent control techniques. Sci. China Phys. Mech. Astron. 66, 240314 (2023). https://doi.org/10.1007/s11433-022-2034-5

    Article  ADS  Google Scholar 

  26. Ping, Z., Li, L., Liang, M.H.: Effect of noise on remote preparation of an arbitrary single-qubit state. Quantum Eng. 3, e164 (2021). https://doi.org/10.1002/que2.64

    Article  Google Scholar 

  27. Lu, X.Q., Feng, K.H., Zhou, P.: Deterministic remote preparation of an arbitrary single-qudit state with high-dimensional spatial-mode entanglement via linear-optical elements. Int. J. Theor. Phys. 61, 36 (2022). https://doi.org/10.1007/s10773-022-04976-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, K.H., Chen, Y.C., Zhou, P.: Protecting high-dimensional entanglement from decoherence via quantum weak measurement and reversal. Mod. Phys. Lett. A 37(19), 2250117 (2022). https://doi.org/10.1142/S0217732322501176

    Article  MathSciNet  ADS  Google Scholar 

  29. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015). https://doi.org/10.1007/s11128-015-1078-x

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Falaye, B.J., Sun, G.-H., Nieto, O.C., Dong, S.-H.: JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels. Int. J. Quantum Inf. 14(07), 1650034 (2016). https://doi.org/10.1142/S0219749916500349

  31. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016). https://doi.org/10.1007/s11128-016-1430-9

    Article  MATH  ADS  Google Scholar 

  32. Adepoju, A.G., Falaye, B.J., Sun, G.H., Nieto, O.C., Dong, S.H.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381, 581 (2017). https://doi.org/10.1016/j.physleta.2016.12.021

    Article  ADS  Google Scholar 

  33. Zhao, H.X., Huang, L.: Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 56, 720 (2017). https://doi.org/10.1007/s10773-016-3213-6

    Article  MATH  Google Scholar 

  34. Wu, T., Li, Y., Luo, B., Wei, J.: Enhancing the fidelity of joint remote state preparation by weak measurement. Modern Phys. Lett. B 36, 2250061 (2022). https://doi.org/10.1142/S0217984922500610

    Article  MathSciNet  ADS  Google Scholar 

  35. Dat, L.T., Hop, N.V., An, N.B.: Coping with noise in joint remote preparation of a general two-qubit state by using nonmaximally entangled quantum channel. Commun. Phys. 28, 1–19 (2018). https://doi.org/10.15625/0868-3166/28/1/11722

    Article  ADS  Google Scholar 

  36. Dash, T., Rajiuddin, S.K., Panigrahi, P.K.: Deterministic joint remote state preparation of arbitrary two-qubit state through noisy cluster-GHZ channel. Opt. Commun. 464, 125518 (2020). https://doi.org/10.1016/j.optcom.2020.125518

  37. Zhang, Z., Sun, M.: Enhanced deterministic joint remote state preparation under Pauli channels with memory. Phys. Scr. 95, 055107 (2020). https://doi.org/10.1088/1402-4896/ab71be

    Article  ADS  Google Scholar 

  38. Zhang, Z., Zhao, C., Wang, J., Shu, L.: Joint remote state preparation of mixed states. J. Phys. B: At. Mol. Opt. Phys. 53, 025501 (2020). https://doi.org/10.1088/1361-6455/ab4eed

    Article  ADS  Google Scholar 

  39. Chen, Q., Lu, M., Hao, S.: Effect of noise on joint remote preparation of an arbitrary two-qubit state via a Brown state. Indian J. Phys. 95, 881 (2021). https://doi.org/10.1007/s12648-019-01649-7

    Article  ADS  Google Scholar 

  40. Hou, K., Chen, Z.Y., Shi, M., Zhang, X.Y.: Effective deterministic joint remote preparation of the Knill–Laflamme–Milburn state in collective noise environment. Quantum Inf. Process. 20, 225 (2021). https://doi.org/10.1007/s11128-021-03163-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Hop, N.V., Bich, C.T., An, N.B.: Optimal joint remote state preparation in the presence of various types of noises. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015012 (2017). https://doi.org/10.1088/2043-6254/aa5980

    Article  ADS  Google Scholar 

  42. Hop, N.V.: Optimal fidelity for quantum teleportation protocol of an arbitrary qubit state affected by amplitude-damping noise: causes and results. Quantum Inf. Process. 18, 340 (2019). https://doi.org/10.1007/s11128-019-2455-7

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. An, N.B., Jaewan, K.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41, 095501 (2008). https://doi.org/10.1088/0953-4075/41/9/095501

    Article  MATH  Google Scholar 

  44. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40, 3719 (2007). https://doi.org/10.1088/0953-4075/40/18/011

    Article  ADS  Google Scholar 

  45. Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer, Boston (1983)

    Book  MATH  Google Scholar 

  46. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

  47. Rafsanjani, S.M.H., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012). https://doi.org/10.1103/PhysRevA.86.062303

    Article  ADS  Google Scholar 

  48. Harlender, T., Roszak, K.: Transfer and teleportation of system-environment entanglement. Phys. Rev. A 105, 012407 (2022). https://doi.org/10.1103/PhysRevA.105.012407

    Article  MathSciNet  ADS  Google Scholar 

  49. Fanchini, F.F., Karpat, G., Çakmak, B., Castelano, L.K., Aguilar, G.H., Jiménez Farías, O., Walborn, S.P., Souto Ribeiro, P.H., de Oliveira, M.C.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014). https://doi.org/10.1103/PhysRevLett.112.210402

    Article  ADS  Google Scholar 

  50. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004). https://doi.org/10.1103/PhysRevA.69.022309

    Article  MathSciNet  ADS  Google Scholar 

  51. López, C.E., Romero, G., Lastra, F., Solano, E., Retamal, J.C.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101, 080503 (2008). https://doi.org/10.1103/PhysRevLett.101.080503

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Vietnam Ministry of Education and Training under Grant Number B2022-SPH-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hop Nguyen Van.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen Van, H. The origin of improving the fidelity of the joint remote state preparation of an arbitrary qubit state affected by amplitude-damping noise. Quantum Inf Process 22, 414 (2023). https://doi.org/10.1007/s11128-023-04164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04164-1

Keywords

Navigation