Skip to main content
Log in

Hybrid bidirectional quantum communication protocol of two single-qubit states under noisy channels with memory

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we discuss a protocol for remote preparation and transfer of a known and an unknown state between two parties, respectively. It is a bidirectional hybrid protocol consisting of teleportation from one end and remote state preparation from the other end. Firstly, we describe a protocol for the above purpose using a five-qubit pure entangled state as a quantum channel. After that, we consider the effect of correlated Pauli noise on the protocol. Particularly, we consider bit-flip noise, bit-phase-flip noise, phase-damping noise, depolarizing noise and two-Pauli noise, all of which are with memory. We present an analysis of the fidelity with variations of certain involved parameters. Our findings qualitatively agree with the finding of several existing works that fidelity can be improved if the correlation parameter can be properly chosen. Also, we construct a quantum circuit for the preparation of our quantum resource and execute the circuit on IBM qasm simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Our manuscript has no associated data.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  4. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  6. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Google Scholar 

  7. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Google Scholar 

  8. Zhang, H.R., Sun, Z., Qi, R.Y., Yin, L.G., Long, G.L., Lu, J.H.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83 (2022)

    ADS  Google Scholar 

  9. Zhang, Z., Sang, Y.: Bidirectional quantum teleportation in multi-hop communication network. Quant. Inf. Process. 22, 201 (2023)

    MathSciNet  MATH  ADS  Google Scholar 

  10. Shen, S., et al.: Hertz-rate metropolitan quantum teleportation. Light Sci. Appl. 12, 115 (2023)

    ADS  Google Scholar 

  11. Kim, M., Hwang, M.R., Jung, E., Park, D.: Scrambling and quantum teleportation. Quant. Inf. Process. 22, 176 (2023)

    MathSciNet  MATH  ADS  Google Scholar 

  12. Harraz, S., Cong, S., Nieto, J.J.: Optimal tripartite quantum teleportation protocol through noisy channels. Quant. Inf. Process. 22, 83 (2023)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    MathSciNet  MATH  ADS  Google Scholar 

  14. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    ADS  Google Scholar 

  15. Shi, R., Huang, L., Yang, W.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quant. Inf. Process. 10, 231–239 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quant. Inf. Process. 15, 3383–3392 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  17. Zhou, R.G., Qian, C., Xu, R.: A novel protocol for bidirectional controlled quantum teleportation of two-qubit states via seven-qubit entangled state in noisy environment. Int. J. Theor. Phys. 59, 134–148 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Sarvaghad-Moghaddam, M., Ramezani, Z., Amiri, I.S.: Bidirectional controlled quantum teleportation using eight-qubit quantum channel in noisy environments. Int. J. Theor. Phys. 58, 3156–3173 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Harraz, S., Cong, S., Nieto, J.J.: Protected quantum teleportation through noisy channel by weak measurement and environment-assisted measurement. IEEE Commun. Lett. 26(3), 528–531 (2022)

    Google Scholar 

  20. Seida, C., El Allati, A., Metwally, N., Hassouni, Y.: Efficiency increasing of the bidirectional teleportation protocol via weak and reversal measurements. Phys. Scripta 97(2), 025102 (2022)

    ADS  Google Scholar 

  21. Faleeva, M., Popov, I.: Singular numbers, entangled qubits transmission through a turbulent atmosphere and teleportation. Indian J. Phys. 96(8), 2501–2505 (2022)

    ADS  Google Scholar 

  22. Xu, J., Xu, X., Zuo, Z., Guo, Y.: Continuous variable quantum teleportation through turbulent channels. Phys. Scripta 97(4), 045103 (2022)

    ADS  Google Scholar 

  23. Duc, T.M., Dat, T.Q.: Enhanced entanglement and quantum teleportation of two-mode squeezed vacuum state via multistage non-Gaussian operations. Optik 287, 170988 (2023)

    ADS  Google Scholar 

  24. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969–1975 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quant. Inf. Process. 15(2), 905–912 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  27. Verma, V.: Bidirectional quantum teleportation by using two GHZ-states as the quantum channel. IEEE Commun. Lett. 25(3), 9250457, 936–939 (2021)

  28. Hu, K.X., Wang, Y.W., Jin, B.Q., Zheng, Y.Z.: Teleporting an arbitrary two-particle state via W or W-like state. Int. J. Quant. Inf. 6(5), 1041–1049 (2008)

    MATH  Google Scholar 

  29. Zha, X.W., Song, H.Y.: Optimal schemes of teleportation one-particle state by a three-particle general w state. Commun. Theor. Phys. 53(5), 852–854 (2010)

    MATH  ADS  Google Scholar 

  30. Zhan, H.T., Yu, X.T., Xiong, P.Y., Zhang, Z.C.: Multi-hop teleportation based on W-state and EPR pairs. Chin. Phys. B 25, 050305 (2016)

    Google Scholar 

  31. Gao, X., Zhang, Z., Gong, Y., Sheng, B., Yu, X.: Teleportation of entanglement using a three-particle entangled W-state. J. Opt. Soc. Am. B: Opt. Phys. 34(1), 142–147 (2017)

  32. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52(1), 22–27 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional \(3 \leftrightarrow 2\) qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Dai, R., Li, H.S.: Asymmetric bidirectional quantum teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 61(7), 187 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Wang, M., Li, H.S.: Bidirectional quantum teleportation using a five-qubit cluster state as a quantum channel. Quant. Inf. Process. 21(2), 44 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  36. Malik, J.A., Lone, M.Q., Malla, R.A.: Symmetric bidirectional quantum teleportation using a six-qubit cluster state as a quantum channel. Pramana - J. Phys. 97(1), 50 (2023)

    ADS  Google Scholar 

  37. Liu, J.C., Li, Y.H., Nie, Y.Y.: Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state. Int. J. Theor. Phys. 49, 1976–1984 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)

    MATH  Google Scholar 

  39. Barasiński, A., Svozilík, J.: Controlled teleportation of qubit states: Relation between teleportation faithfulness, controller’s authority, and tripartite entanglement. Phys. Rev. A 99(14), 012306 (2019)

    ADS  Google Scholar 

  40. Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(5), 1541–1545 (2019)

    MATH  Google Scholar 

  41. Sisodia, M.: A theoretical study of controlled quantum teleportation scheme for n-qubit quantum state. Int. J. Theor. Phys. 61(12), 270 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Mafi, Y., Aghababa, H.: Asymmetric bidirectional controlled quantum teleportation using eight-qubit cluster state. Int. J. Theor. Phys. 61(2), 17 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Choudhury, B.S., Samanta, S.: A controlled asymmetric quantum conference. Int. J. Theor. Phys. 61, 14 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Pandey, R.K., Yadav, P.S., Prakash, R., Prakash, H.: Controlled bidirectional quantum teleportation of superposed coherent state using five-mode cluster-type entangled coherent state as a resource. Int. J. Theor. Phys. 61(4), 104 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Shi, W.M., Bai, M.X., Zhou, Y.H., Yang, Y.G.: Controlled quantum teleportation based on quantum walks. Quant. Inf. Process. 22(1), 34 (2023)

    MathSciNet  MATH  ADS  Google Scholar 

  46. Kaur, S., Lal, J., Gill, S.: Bidirectional quantum controlled teleportation of unique four-qubit states by newly entangled 15-qubit state. Opt. Quantum Electron. 55(7), 575 (2023)

    Google Scholar 

  47. Kirdi, M., Slaoui, A., Hadfi, H., Daoud, M.: Efficient quantum controlled teleportation of an arbitrary three-qubit state using two GHZ entangled states and One Bell entangled state. J. Russ. Laser Res. 44(2), 121–134 (2023)

    Google Scholar 

  48. Lo, H. K.: Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

  49. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    ADS  Google Scholar 

  50. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a non-maximally entangled state. Phys. Rev. A 69, 022310 (2004)

    ADS  Google Scholar 

  51. Wang, D.: Remote preparation of an arbitrary two-particle pure state via non-maximally entangled states and positive operator-valued measurement. Int. J. Quant. Inf. 8(8), 1265–1275 (2010)

    MATH  Google Scholar 

  52. Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quant. Inf. Process. 14(6), 2135–2151 (2015)

    MATH  ADS  Google Scholar 

  53. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quant. Inf. Process. 14(9), 3441–3464 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  54. Sang, Z.W.: Asymmetric bidirectional controlled remote state preparation by using a seven-particle entangled state. Int. J. Theor. Phys. 56, 3209–3212 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Bidirectional controlled remote state preparation of an arbitrary two-qubit state. Int. J. Theor. Phys. 58(7), 2228–2234 (2019)

    MATH  Google Scholar 

  56. Jia-yin, P., Hong-xuan, L.: Cyclic remote state preparation. Int. J. Theor. Phys. 60(4), 1593–1602 (2021)

    MathSciNet  MATH  Google Scholar 

  57. An, N.B., Choudhury, B.S., Samanta, S.: Two-way remote preparations of inequivalent quantum states under a common control. Int. J. Theor. Phys. 60, 47–62 (2021)

    MathSciNet  MATH  Google Scholar 

  58. Choudhury, B.S., Samanta, S.: A controlled asymmetric quantum conference. Int. J. Theor. Phys. 61(2), 14 (2022)

    MathSciNet  MATH  Google Scholar 

  59. Lu, X.Q., Feng, K.H., Zhou, P.: Deterministic remote preparation of an arbitrary single-qudit state with high-dimensional spatial-mode entanglement via linear-optical elements. Int. J. Theor. Phys. 61, 36 (2022)

    MathSciNet  MATH  Google Scholar 

  60. Asthana, S., Bala, R., Ravishankar, V.: Quantum communication with SU(2) invariant separable 2\(\times \)N level systems. Quant. Inf. Process. 21(1), 35 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  61. Iyen, C., Falaye, B.J., Liman, M.S.: Scrutinizing joint remote state preparation under decoherence. Sci. Rep. 13(1), 8066 (2023)

    ADS  Google Scholar 

  62. Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels. Int. J. Quant. Inf. 14(7), 1650034 (2016)

    MATH  Google Scholar 

  63. Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381(6), 581–587 (2017)

  64. Peng, J.Y., Xiang, Y.: Bidirectional remote state preparation in noisy environment assisted by weak measurement. Optic Commun. 499, 127285 (2021)

    Google Scholar 

  65. Choudhury, B.S., Mandal, M.K., Samanta, S., Dolai, B.: A mentor initiated bi-directional controlled remote state preparation protocol for non-maximally entangled Bell and GHZ states. Chin. J. Phys. 84, 27–38 (2023)

    MathSciNet  Google Scholar 

  66. Choudhury, B.S., Mandal, M.K., Samanta, S.: Mentor initiated controlled bi-directional remote state preparation scheme for \((2 \Leftrightarrow 4)\) -qubit entangled states in noisy channel. Int. J. Theor. Phys. 62(5), 107 (2023)

    MathSciNet  MATH  Google Scholar 

  67. Macchiavello, C., Palma, G.M.: Entanglement enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65(5), 882–886 (2001)

    Google Scholar 

  68. Guo, Y., Tian, Q., Zeng, K. et al. Fidelity of quantum teleportation in correlated quantum channels. Quant. Inf. Process. 19, 182 (2020)

  69. Peng, J.Y., Yang, Z., Tang, L., et al.: Controlled remote state preparation of single-particle state under noisy channels with memory. Quant. Inf. Process. 22, 145 (2023)

    MathSciNet  MATH  ADS  Google Scholar 

  70. Filippo, C., Vittorio, G., Cosmo, L., Stefano, M.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Google Scholar 

  71. Li, Y.L., Zu, C.J., Wei, D.M., et al.: Correlated effects in Pauli channels for quantum teleportation. Int. J. Theor. Phys. 58, 1350–1358 (2019)

    MathSciNet  MATH  Google Scholar 

  72. Zhang, Z., Sun, M.: Enhanced deterministic joint remote state preparation under Pauli channels with memory. Phys. Scr. 95, 055107 (2020)

    ADS  Google Scholar 

  73. Jiang, S., Zhao, B., Liang, X.: Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory. Chin. Phys. B 30(6), 060303 (2021)

    ADS  Google Scholar 

  74. He, L.M., Wang, N., Zhou, P.: Effect of quantum noise on teleportation of an arbitrary single-qubit state via a triparticle W state. Int. J. Theor. Phys. 59, 1081–1098 (2020)

    MathSciNet  MATH  Google Scholar 

  75. Wang, F., Erhard, M., Babazadeh, A., Malik, M., Krenn, M., Zeilinger, A.: Generation of the complete four-dimensional Bell basis. Optica 4, 1462–1467 (2017)

    ADS  Google Scholar 

  76. Clark, C.R., Tinkey, H.N., Sawyer, B.C., Meier, A.M., Burkhardt, K.A., Seck, C.M., Shappert, C.M., Guise, N.D., Volin, C.E., Fallek, S.D., Hayden, H.T., Rellergert, W.G., Brown, K.R.: High-fidelity bell-state preparation with \(~^{40}Ca^+\) optical qubits. Phys. Rev. Lett. 127, 130505 (2021)

    ADS  Google Scholar 

  77. Yuan, H., et al.: Optimizing resource consumption, operation complexity and efficiency in quantum state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14), 145506 (1–6) (2008)

  78. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via FiveQubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Google Scholar 

  79. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    MathSciNet  Google Scholar 

  80. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013)

    MathSciNet  MATH  Google Scholar 

  81. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016)

    MATH  Google Scholar 

  82. Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014)

    MATH  Google Scholar 

  83. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    MATH  Google Scholar 

  84. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Indian Institute of Engineering Science and Technology, Shibpur, India. The valuable suggestions of the reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed.

Corresponding author

Correspondence to Manoj Kumar Mandal.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M.K., Choudhury, B.S. & Samanta, S. Hybrid bidirectional quantum communication protocol of two single-qubit states under noisy channels with memory. Quantum Inf Process 22, 406 (2023). https://doi.org/10.1007/s11128-023-04165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04165-0

Keywords

Navigation