Skip to main content
Log in

An orderly quantum multi-signature based on orthogonal product states for the multi-party transaction blockchain

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposes an orderly identity-based quantum multi-signature scheme exploring the concept of locally indistinguishable orthogonal product states. In the developed scheme, the classic message is converted into a quantum bit string with indistinguishable orthogonal product states that cannot be precisely distinguished by local operations and classical communication (LOCC). The private key generator (PKG) generates keys by the signer’s ID and shares them with the signers, which are used in sequence permutation. Moreover, the verifier Bob generates keys shared with the signers, and the latter sign the message with both keys and their ID. Given that a signature verifier can verify the signature with ID, the proposed scheme has the advantages of the classic identity-based signature scheme. Additionally, it avoids the PKG decoding message from the signature, ensuring the security of non-reputation and unforgeability. Moreover, our method does not require long-term quantum memory, making it more secure and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Rivest, R.L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 26(2), 96–99 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Miller V.S.: Use of elliptic curves in cryptography. In: Conference on the Theory and Application of Cryptographic Techniques, Springer, Berlin, Heidelberg, pp. 417–426 (1985)

  3. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    MathSciNet  MATH  Google Scholar 

  4. NIST: A proposed federal information processing standard for digital signature standard (DSS). Fed. Regist. 56(169), 42980–42982 (1991)

    Google Scholar 

  5. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)

  6. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    ADS  Google Scholar 

  7. Yang, Y.G., Lei, H., Liu, Z.C., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Yang, Y.G., Zhou, Z., Teng, Y.W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)

    ADS  Google Scholar 

  9. Luo, M.X., Chen, X.B., Yun, D., et al.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51(7), 2135–2142 (2012)

    MATH  Google Scholar 

  10. Fatahi, N., Naseri, M., Gong, L.H., et al.: High-efficient arbitrated quantum signature scheme based on cluster states. Int. J. Theor. Phys. 56(2), 609–616 (2017)

    MATH  Google Scholar 

  11. Shi, R., Ding, W., Shi, J.: Arbitrated quantum signature with Hamiltonian algorithm based on blind quantum computation. Int. J. Theor. Phys. 57(7), 1961–1973 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, Y., Zeng, J.: An improved arbitrated quantum scheme with Bell states. Int. J. Theor. Phys. 57(4), 994–1003 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(9), 1036–1045 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    ADS  MathSciNet  Google Scholar 

  15. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Su, Q., Li, W.M.: Improved quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 52(9), 3343–3352 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Kang, M.S., Hong, C.H., Heo, J., et al.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54(2), 614–629 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Guo, Y., Feng, Y., Huang, D., et al.: Arbitrated quantum signature scheme with continuous-variable coherent states. Int. J. Theor. Phys. 55(4), 2290–2302 (2016)

    MATH  Google Scholar 

  19. Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16(19), 1–10 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Ma, H., Li, F., Mao, N., et al.: Network-based arbitrated quantum signature scheme with graph state. Int. J. Theor. Phys. 56(8), 2551–2561 (2017)

    MATH  Google Scholar 

  21. Zhang, C.H., Zhou, X.Y., Ding, H.J., et al.: Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. A 10(3), 034033 (2018)

    Google Scholar 

  22. Ding, H.J., Chen, J.J., Ji, L., et al.: 280-km experimental demonstration of a quantum digital signature with one decoy state. Opt. Lett. 45(7), 1711–1714 (2020)

    ADS  Google Scholar 

  23. Zhang, C.H., Zhou, X., Zhang, C.M., et al.: Twin-field quantum digital signatures. Opt. Lett. 46(15), 3757–3760 (2021)

    ADS  Google Scholar 

  24. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    ADS  Google Scholar 

  25. Liu, F., Zhang, K., Cao, T.: Security weaknesses in arbitrated quantum signature protocols. Int. J. Theor. Phys. 53(1), 277–288 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Li, Q., Chan, W.H., Wu, C., et al.: On the existence of quantum signature for quantum messages. Int. J. Theor. Phys. 52(12), 4335–4341 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Kang, M.S., Hong, C.H., Heo, J., et al.: Comment on “Quantum signature scheme with weak arbitrator.” Int. J. Theor. Phys. 53(6), 1862–1866 (2014)

    MATH  Google Scholar 

  29. Zou, X., Qiu, D., Yu, F., et al.: Security problems in the quantum signature scheme with a weak arbitrator. Int. J. Theor. Phys. 53(2), 603–611 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Li, Q., Li, C., Wen, Z., et al.: On the security of arbitrated quantum signature schemes. J. Phys. A: Math. Theor. 46(1), 015307 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in Cryptology: Proceedings of CRYPTO 84(4), pp. 47–53. Springer Berlin Heidelberg (1985)

  32. Chen, F.L., Liu, W.F., Chen, S.G., et al.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(1), 1–14 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    ADS  Google Scholar 

  34. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Res. Dev. 71(71), 1–8 (1983)

    Google Scholar 

  35. Jiang, D.H., Hu, Q.Z., Liang, X.Q., et al.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 1–14 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Shannon, C.E.: Communication theory of secrecy systems. The Bell System Technical Journal 28(4), 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

  37. Kahn, D.: The codebreakers: The story of secret writing. Am. Hist. Rev. 74(2), 537–538 (1968)

    Google Scholar 

  38. Yu, S., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states. arXiv preprint arXiv:1502.01274 (2015)

  39. Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89(14), 147901 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Wang, Y.L., Li, M.S., Zheng, Z.J., et al.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92(3), 032313 (2015)

    ADS  Google Scholar 

  41. Zhang, Z.C., Gao, F., Cao, Y., et al.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93(1), 012314 (2016)

    ADS  MathSciNet  Google Scholar 

  42. Xu, G.B., Wen, Q.Y., Qin, S.J., et al.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)

    ADS  Google Scholar 

  43. Xu, G.B., Yang, Y.H., Wen, Q.Y., et al.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6(1), 1–6 (2016)

    Google Scholar 

  44. Xu, G.B., Wen, Q.Y., Gao, F., et al.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16(11), 1–19 (2017)

    MATH  Google Scholar 

  45. Guo, G.P., Li, C.F., Shi, B.S., et al.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64(4), 042301 (2001)

    ADS  Google Scholar 

  46. Jiang, D.H., Xu, G.B.: Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 17(7), 1–17 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557 (2020)

  48. Weng, C.X., Lu, Y.S., Gao, R.Q., Xie, Y.M., Gu, J., Li, C.L., Li, B.H., Yin, H.L., Chen, Z.B.: Secure and practical multiparty quantum digital signatures. Opt. Express 29(11), 27661–27673 (2021)

    ADS  Google Scholar 

  49. Ruan, X., Zhang, H., Zhao, W., Jin, D., Wang, Z., Guo, Y.: Orbital angular momentum-encoded quantum digital signature over atmospheric channel. Quantum Inf. Process. 21(5), 191 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Cai, X.Q., Wang, T.Y., Wei, C.Y., Gao, F.: Cryptanalysis of quantum digital signature for the access control of sensitive data. Physica A 593, 126949 (2022)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by “the Fundamental Research Funds for the Central Universities” (Grant Nos. 3282023015; 3282023051), National first-class undergraduate program construction site of “Information Security”, the Research on Digital Identity Trust System for Massive Heterogeneous Terminals in Road Traffic System (Grant No. 2022YFB3104402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-bo Chen.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Chen, Xb., Wang, Z. et al. An orderly quantum multi-signature based on orthogonal product states for the multi-party transaction blockchain. Quantum Inf Process 22, 417 (2023). https://doi.org/10.1007/s11128-023-04169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04169-w

Keywords

Navigation