Abstract
Quantum key agreement (QKA) is an important cryptographic primitive that plays a pivotal role in private communications. However, in practical implementations of QKA, the flaws in participants’ detectors may be exploited to compromise the security and fairness of the protocol. To address this issue, we propose a two-party measurement-device-independent QKA protocol, effectively eliminating all detector-side-channel loopholes. This protocol is based on quantum entanglement swapping and Bell-state measurements, making it feasible under current technological conditions. A thorough security analysis is conducted, demonstrating its ability to guarantee both security and fairness.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-023-04189-6/MediaObjects/11128_2023_4189_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-023-04189-6/MediaObjects/11128_2023_4189_Fig2_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No data was used for the research described in the article.
References
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proceedings on IEEE International Conference on Computing, Systematic Signal Processing, pp. 175–179. IEEE, New York (1984).
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)
Dutta, A., Pathak, A.: New protocols for quantum key distribution with explicit upper and lower bound on secret-key rate. arXiv preprint arXiv:2212.13089 (2022).
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)
Dutta, A., Pathak, A.: Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quantum Inf. Process. 22(1), 13 (2022)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)
Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)
Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)
Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)
Zeng, G.H., Keitel, C.H.: An arbitrated quantum signature algorithm. Phys. Rev. A 65, 042312 (2002)
Yang, Y.G., Liu, Z.C., Li, J., Chen, X.B., Zuo, H.J., Zhou, Y.H., Shi, W.M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 12 (2017)
Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)
Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)
Yang Y.G., Liu B.X., Xu G.B., Zhou Y.H., and Shi W.M.: Practical quantum anonymous private information retrieval based on quantum key distribution. IEEE Trans. Inf. Forens. Secur. 18, 4034-4045 (2023)
Yang, Y.G., Liu, Z.C., Chen, X.B., Zhou, Y.H., Shi, W.M.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Phys. Mech. Astron. 60(12), 120311 (2017)
Yang, Y.G., Liu, Z.C., Li, J., Chen, X.B., Zuo, H.J., Zhou, Y.H., Shi, W.M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)
Yang, Y.G., Liu, Z.C., Chen, X.B., Cao, W.F., Zhou, Y.H., Shi, W.M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15, 3833–3840 (2016)
Gao, F., Liu, B., Wen, Q.Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411–17420 (2012)
Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)
Yang, Y.G., Guo, X.P., Xu, G., Chen, X.B., Li, J., Zhou, Y.H., Shi, W.M.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)
Zhang, Z., Zeng, G., Zhou, N., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356(3), 199–205 (2006)
Dutta, A., Pathak, A.: A short review on quantum identity authentication protocols: How would Bob know that he is talking with Alice? Quantum Inf. Process. 21(11), 369 (2022)
Chen, G., Wang, Y., Jian, L., Zhou, Y., Liu, S., Luo, J., Yang, K.: Quantum identity authentication protocol based on flexible quantum homomorphic encryption with qubit rotation. J. Appl. Phys. 133(6), 064402 (2023)
Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)
Tsai, C.W., Hwang, T.: On quantum key agreement protocol. Technical Report C-S-I-E, NCKU, Taiwan (2009).
Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)
He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)
Yang, Y.-G., Wang, Y.-C., Li, J., Zhou, Y.-H., Shi, W.-M.: Semi-device-independent quantum key agreement protocol. Quantum Inf. Process. 20(11), 376 (2021)
Yang, Y.G., Li, B.R., Li, D., et al.: New quantum key agreement protocols based on Bell states. Quantum Inf. Process. 18, 322 (2019)
Zhu, H.F., Liu, T.H., Wang, C.N.: A one-round quantum mutual authenticated key agreement protocol with semi-honest server using three-particle entangled states. Int. J. Theor. Phys. 60, 929–943 (2021)
Huang, X., Zhang, S.B., Chang, Y., Qiu, C., Liu, D.M., Hou, M.: Quantum key agreement protocol based on quantum search algorithm. Int. J. Theor. Phys. 60, 838–847 (2021)
Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)
Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)
Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)
Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: Two-party quantum key agreement over a collective noisy channel. Quantum Inf. Process. 18(3), 74 (2019)
Wang, P., Sun, Z., Sun, X.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16, 170 (2017)
Yang, Y.G., Li, B.R., Kang, S.Y., et al.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18, 77 (2019)
Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)
Naresh, V.S., Reddi, S.: Multiparty quantum key agreement with strong fairness property. Comput. Syst. Sci. Eng. 35(6), 457–465 (2020)
Naresh, V.S., Nasralla, M.M., Reddi, S., García-Magariño, I.: Quantum Diffie-Hellman extended to dynamic quantum group key agreement for e-Healthcare multi-agent systems in smart cities. Sensors 20(14), 3940 (2020)
Li, L., Li, Z.: A verifiable multiparty quantum key agreement based on bivariate polynomial. Inf. Sci. 521, 343–349 (2020)
Lin, S., Zhang, X., Guo, G.D., Wang, L.L., Liu, X.F.: Multiparty quantum key agreement. Phys. Rev. A 104, 042421 (2021)
Yang, Y.G., Lv, X.L., Gao, S., et al.: Detector-device-independent quantum key agreement based on single-photon Bell state measurement. Int. J. Theor. Phys. 61(2), 50 (2022)
Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014)
Yang, Y.-G., Liu, X.-X., Gao, S., Zhou, Y.-H., Shi, W.-M., Li, J., Li, D.: Towards practical anonymous quantum communication: A measurement-device-independent approach. Phys. Rev. A 104(5), 052415 (2021)
Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photon. 4(10), 686–689 (2010)
Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)
Gerhardt, I., Liu, Q., Lamas-Linares, A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Commun. 2(1), 349 (2011)
Acín, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Cao, Y., Li, Y.H., Yang, K.X., et al.: Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125(26), 260503 (2020)
Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93(4), 042324 (2016)
Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)
Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)
Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 042332 (2018)
Wang, X.B., Yu, Z.W., Hu, X.L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)
Wang, S., Yin, Z.Q., He, D.Y., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022)
Zeng, P., Zhou, H.Y., Wu, W.J., Ma, X.F.: Mode-pairing quantum key distribution. Nat. Commun. 13, 3903 (2022)
Fan-Yuan, G.J., Lu, F.Y., Wang, S., et al.: Measurement-device-independent quantum key distribution for nonstandalone networks. Photon. Res. 9(10), 1881–1891 (2021)
Fan-Yuan, G.J., Lu, F.Y., Wang, S., et al.: Robust and adaptable quantum key distribution network without trusted nodes. Optica 9, 812–823 (2022)
Cai, X.Q., Liu, Z.F., Wei, C.Y., Wang, T.Y.: Long distance measurement-device-independent three-party quantum key agreement. Phys. A: Stat. Mech. Its Appl. 607, 128226 (2022)
Cabellon, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)
Liu, B.X., Huang, R.C., Yang, Y.G., Xu, G.B.: Measurement-device-independent multi-party quantum key agreement. Front. Quantum Sci. Technol. (2023). https://doi.org/10.3389/frqst.2023.1182637
Zhou, Z., Sheng, Y., Niu, P., et al.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)
Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999)
Welte, S., Thomas, P., Hartung, L., et al.: A nondestructive Bell-state measurement on two distant atomic qubits. Nat. Photon. 15, 504–509 (2021)
Barrett, S.D., Kok, P., Nemoto, K., et al.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)
Ren, X.F., Guo, G.P., Guo, G.C.: Complete Bell-states analysis using hyper-entanglement. Phys. Lett. A 343(1–3), 8–11 (2005)
Li, T., Miranowicz, A., Hu, X., et al.: Quantum memory and gates using a -type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97(6), 062318 (2018)
Ul Haq, S., Khalique, A.: Long distance cavity entanglement by entanglement swapping using atomic momenta. Opt. Commun. 334, 290–293 (2015)
Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)
Yang, Y.-G., Sun, S.-J., Tian, J., Xu, P.: Secure quantum private query with real-time security check.Optik. 125, 5538–5541 (2014)
Yang, Y.-G., Zhang, M.-O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015)
Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. 58(9), 2810–2822 (2019)
Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(5), 215 (2019)
Cao, W.-F., Yang, Y.-G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)
Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., et al.: Quantum network communication: A discrete-time quantum-walk approach. Sci. Chin. Inf. Sci. 61, 042501 (2018)
Yang, Y.-G., Yang, R., Cao, W.-F., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Flexible quantum oblivious transfer. Int. J. Theor. Phys. 56(4), 1286–1297 (2017)
Li, J., Yang, Y.-G., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Practical quantum private database queries based on passive round-Robin differential phase-shift quantum key distribution. Sci. Rep. 6, 31738 (2016)
Yang, Y.-G., Sun, S.-J., Pan, Q.-X., Xu, P.: Quantum oblivious transfer based on unambiguous set discrimination.Optik. 126(23), 3838–3843 (2015)
Yang, Y.-G., Wang, Y.-C., Yang, Y.-L., Chen, X.-B., Li, D., Zhou, Y.-H., Shi, W.-M.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. Chin. Phys. Mech. Astron. 64(6), 121–124 (2021)
Yang, Y.-G., Liu, X.-X., Gao, S., Chen, X.-B., Li, D., Zhou, Y.-H., Shi, W.-M.: A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing.Quantum Inf. Process. 20(7), 223 (2021)
Yang, Y.-G., Cao, G.-D., Huang, R.-C., Gao, S., Zhou, Y.-H., Shi, W.-M., Xu, G.B.: Multiparty anonymous quantum communication without multipartite entanglement. Quantum Inf. Process. 21(6), 196 (2022)
Yang, Y.-G., Yang, Y.-L., Lv, X.-L., et al.: Examining the correctness of anonymity for practical quantum networks (vol 101, 062311, 2020). Phys. Rev. A. 106(4), 049901 (2022)
Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., Shi, W.-M., Li, J.: Efficient quantum multi-hop communication based on Greenberger-Horne-Zeilinger states and Bell states. Quantum Inf. Process. 20(5), 189 (2021)
Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Measurement-device-independent quantum wireless network communication. Quantum Inf. Process. 21(4), 154 (2022)
Yang, Y.-G., Yang P.-Z., Xu G.-B., et al.: Quantum private information retrieval over a collective noisy channel. Mod. Phys. Lett. A 38(1), 2350001(2023)
Yang, Y.-G., Huang R.-C., Xu G.-B., et al.: New multiparty measurement-device-independent quantum secret sharing protocol based on entanglement swapping. Mod. Phys. Lett. A https://doi.org/10.1142/S0217732323501456 (2023)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 62071015, 62171264); Shandong Provincial Natural Science Foundation (ZR2023MF080).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, YG., Huang, RC., Xu, GB. et al. Measurement-device-independent quantum key agreement based on entanglement swapping. Quantum Inf Process 22, 438 (2023). https://doi.org/10.1007/s11128-023-04189-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04189-6