Skip to main content
Log in

Quantum walk-based controlled quantum teleportation schemes under the effect of decoherence in Markovian and non-Markovian regimes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The introduction of quantum walk into quantum teleportation offers a new formation of entanglement between the position space and the coin space using a conditional shift operator. By considering discrete time quantum walks on the cycles, controlled quantum teleportation schemes which can teleport multiple qubits in the multi-dimensional Hilbert spaces are put forward. We also present a decoherence analysis of the proposed protocols in different environments containing dephasing, dissipative and noisy channels using Lindblad operators under the effect of Markovian and non-Markovian regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Date availability

Data will be made available on reasonable request.

References

  1. Cacciapuoti, A.S., Caleffi, M., Van Meter, R., Hanzo, L.: When entanglement meets classical communications: quantum teleportation for the quantum internet. IEEE Trans. Commun. 68(6), 3808–3833 (2020)

    Article  Google Scholar 

  2. Harris, G.I., Bowen, W.P.: Quantum teleportation from light to motion. Nat. Photonics 15(11), 792–793 (2021)

    Article  ADS  Google Scholar 

  3. Kong, P.-Y.: A review of quantum key distribution protocols in the perspective of smart grid communication security. IEEE Syst. J. 16(1), 41–54 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.-L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 1–8 (2019)

    Article  Google Scholar 

  5. Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071–2074 (2016)

    Article  Google Scholar 

  6. Zhou, Y.-H., Chen, Z.-S., Yang, Y.-G., Shi, W.-M., Xu, Y.: Three-party quantum secure direct communication protocol with adaptive capacity. Int. J. Theor. Phys. 61(3), 54 (2022)

    Article  MathSciNet  Google Scholar 

  7. Qin, H., Tang, W.K., Tso, R.: Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE J. Sel. Top. Quantum Electron. 26(3), 1–6 (2020)

    Article  Google Scholar 

  8. Xiao, H., Chronopoulos, A.T., Zhang, Z.: An efficient security scheme for vehicular communication using a quantum secret sharing method. IEEE Trans. Veh. Technol. 69(1), 1101–1105 (2019)

    Article  Google Scholar 

  9. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Liu, S., Lou, Y., Jing, J.: Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11(1), 1–8 (2020)

    ADS  Google Scholar 

  11. Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185–188 (2012)

    Article  ADS  Google Scholar 

  12. Zeilinger, A.: Quantum teleportation, onwards and upwards. Nat. Phys. 14(1), 3–4 (2018)

    Article  Google Scholar 

  13. Hu, X.-M., Guo, Y., Liu, B.-H., Li, C.-F., Guo, G.-C.: Progress in quantum teleportation. Nat. Rev. Phys. 1–15 (2023)

  14. Pourkarimi, M.R., Haddadi, S.: Quantum-memory-assisted entropic uncertainty, teleportation, and quantum discord under decohering environments. Laser Phys. Lett. 17(2), 025206 (2020)

    Article  ADS  Google Scholar 

  15. Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. 18(11), 1–19 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zarmehi, F., Kochakzadeh, M.H., Abbasi-Moghadam, D., Talebi, S.: Efficient circular controlled quantum teleportation and broadcast schemes in the presence of quantum noises. Quantum Inf. Process. 20(5), 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  17. Kumar, A., Haddadi, S., Pourkarimi, M.R., Behera, B.K., Panigrahi, P.K.: Experimental realization of controlled quantum teleportation of arbitrary qubit states via cluster states. Sci. Rep. 10(1), 13608 (2020)

    Article  ADS  Google Scholar 

  18. Zhou, R.-G., Qian, C., Ian, H.: Cyclic and bidirectional quantum teleportation via pseudo multi-qubit states. IEEE Access 7, 42445–42449 (2019)

    Article  Google Scholar 

  19. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  20. Abd El-Latif, A.A., Abd-El-Atty, B., Mazurczyk, W., Fung, C., Venegas-Andraca, S.E.: Secure data encryption based on quantum walks for 5g internet of things scenario. IEEE Trans. Netw. Serv. Manag. 17(1), 118–131 (2020)

    Article  Google Scholar 

  21. Kadian, K., Garhwal, S., Kumar, A.: Quantum walk and its application domains: a systematic review. Comput. Sci. Rev. 41, 100419 (2021)

    Article  MathSciNet  Google Scholar 

  22. Chen, X.-B., Wang, Y.-L., Xu, G., Yang, Y.-X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634–13642 (2019)

    Article  Google Scholar 

  23. Shi, W.-M., Zhuang, Q.-T., Zhou, Y.-H., Yang, Y.-G., et al.: An image reranking algorithm based on discrete-time quantum walk. Multimedia Tools Appl. 1–16 (2023)

  24. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 1–13 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Shang, Y., Wang, Y., Li, M., Lu, R.: Quantum communication protocols by quantum walks with two coins. EPL (Europhys. Lett.) 124(6), 60009 (2019)

    Article  Google Scholar 

  26. Chatterjee, Y., Devrari, V., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation using coined quantum walks. Quantum Inf. Process. 19(1), 1–14 (2020)

    Article  ADS  Google Scholar 

  27. Shi, W.-M., Bai, M.-X., Zhou, Y.-H., Yang, Y.-G.: Controlled quantum teleportation based on quantum walks. Quantum Inf. Process. 22(1), 34 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  28. Pourkarimi, M.R., Rahnama, M., Rooholamini, H.: Decoherence effect on quantum correlation and entanglement in a two-qubit spin chain. Int. J. Theor. Phys. 54, 1085–1097 (2015)

    Article  Google Scholar 

  29. Rahman, A.U., Haddadi, S., Pourkarimi, M.R., Ghominejad, M.: Fidelity of quantum states in a correlated dephasing channel. Laser Phys. Lett. 19(3), 035204 (2022)

    Article  ADS  Google Scholar 

  30. Rahman, A.U., Haddadi, S., Pourkarimi, M.R.: Tripartite quantum correlations under power-law and random telegraph noises: Collective effects of Markovian and non-Markovian classical fields. Ann. Phys. 534(5), 2100584 (2022)

    Article  MathSciNet  Google Scholar 

  31. Benabdallah, F., Haddadi, S., Arian Zad, H., Pourkarimi, M.R., Daoud, M., Ananikian, N.: Pairwise quantum criteria and teleportation in a spin square complex. Sci. Rep. 12(1), 6406 (2022)

    Article  ADS  Google Scholar 

  32. Hu, M.-L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375(21), 2140–2143 (2011)

    Article  ADS  Google Scholar 

  33. Banchi, L., Grant, E., Rocchetto, A., Severini, S.: Modelling non-Markovian quantum processes with recurrent neural networks. New J. Phys. 20(12), 123030 (2018)

    Article  Google Scholar 

  34. Haseli, S., Karpat, G., Salimi, S., Khorashad, A., Fanchini, F., Cakmak, B., Aguilar, G., Walborn, S., Ribeiro, P.S.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90(5), 052118 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Talebi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Tables 3 and 4.

Table 3 Measurement results for CQT in the four-dimensional Hilbert space
Table 4 Measurement results and the appropriate quantum operations for the proposed bidirectional teleportation

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarmehi, F., Talebi, S. & Pourkarimi, M.R. Quantum walk-based controlled quantum teleportation schemes under the effect of decoherence in Markovian and non-Markovian regimes. Quantum Inf Process 22, 436 (2023). https://doi.org/10.1007/s11128-023-04190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04190-z

Keywords

Navigation