Skip to main content
Log in

Classical colored noise-induced quantum synchronization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the phenomenon of quantum transient synchronization in an open quantum system comprising a qubit interacting with a non-Gaussian fluctuating colored-noise environment. The spectrum of this environment follows a power-law form of \(1/f^{\alpha }\). We employ the Husimi Q-function and the synchronization measure S-function to measure the occurrence and strength of phase locking. The findings reveal that Markovian and non-Markovian dynamics contribute to quantum synchronization, with their significance dependent on the parameter \(\alpha \). Our analysis hints at a transition between Markovian and non-Markovian behavior in the pure dephasing evolution, estimated around \(\alpha \approx 1\). Furthermore, the Arnold tongue phenomenon offers additional evidence to support our observations. Deviating from the \(\alpha \approx 1\) value increases the likelihood of synchronization while increasing the number of fluctuators narrows down the synchronization region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Hanson, C.D., Castro, M.E., Russell, D.H.: Phase synchronization of an ion ensemble by frequency sweep excitation in Fourier-transform ion cyclotron resonance. Anal. Chem. 61(19), 2130–2136 (1989)

    Google Scholar 

  2. Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., Barabási, A.-L.: The sound of many hands clapping. Nature 403, 849–850 (2000)

    ADS  Google Scholar 

  3. Chagnac-Amitai, Y., Connors, B.W.: Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J. Neurophysiol. 62, 1149 (1989)

    Google Scholar 

  4. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  5. Goychuk, I., Casado-Pascual, J., Morillo, M., Lehmann, J., Hänggi, P.: Quantum stochastic synchronization. Phys. Rev. Lett. 97, 210601 (2006)

    ADS  Google Scholar 

  6. Orth, P.P., Roosen, D., Hofstetter, W., Le Hur, K.: Dynamics, synchronization, and quantum phase transitions of two dissipative spins. Phys. Rev. B 82, 144423 (2010)

    ADS  Google Scholar 

  7. Quijandría, F., Porras, D., García-Ripoll, J.J., Zueco, D.: Circuit QED bright source for chiral entangled light based on dissipation. Phys. Rev. Lett. 111, 073602 (2013)

    ADS  Google Scholar 

  8. Mari, A., Farace, A., Didier, N., Giovannetti, V., Fazio, R.: Measures of quantum synchronization in continuous variable systems. Phys. Rev. Lett. 111, 103605 (2013)

    ADS  Google Scholar 

  9. Hriscu, A.M., Nazarov, Y.V.: Quantum synchronization of conjugated variables in a superconducting device leads to the fundamental resistance quantization. Phys. Rev. Lett. 110, 097002 (2013)

    ADS  Google Scholar 

  10. Lee, T.E., Sadeghpour, H.R.: Quantum synchronization of quantum van der pol oscillators with trapped ions. Phys. Rev. Lett. 111, 234101 (2013)

    ADS  Google Scholar 

  11. Walter, S., Nunnenkamp, A., Bruder, C.: Quantum synchronization of a driven self-sustained oscillator. Phys. Rev. Lett. 112, 094102 (2014)

    ADS  Google Scholar 

  12. Xu, M., Tieri, D.A., Fine, E.C., Thompson, J.K., Holland, M.J.: Synchronization of two ensembles of atoms. Phys. Rev. Lett. 113, 154101 (2014)

    ADS  Google Scholar 

  13. Hush, M.R., Li, W., Genway, S., Lesanovsky, I., Armour, A.D.: Spin correlations as a probe of quantum synchronization in trapped-ion phonon lasers. Phys. Rev. A 91, 061401(R) (2015)

    ADS  Google Scholar 

  14. Gül, Y.: Synchronization of networked Jahn–Teller systems in SQUIDs. Int. J. Mod. Phys. B 30, 1650125 (2016)

    ADS  MathSciNet  Google Scholar 

  15. Lörch, N., Nigg, S.E., Nunnenkamp, A., Tiwari, R.P., Bruder, C.: Quantum synchronization blockade: energy quantization hinders synchronization of identical oscillators. Phys. Rev. Lett. 118, 243602 (2017)

    ADS  Google Scholar 

  16. Bellomo, B., Giorgi, G.L., Palma, G.M., Zambrini, R.: Quantum synchronization as a local signature of super- and subradiance. Phys. Rev. A 95, 043807 (2017)

    ADS  Google Scholar 

  17. Li, W., Li, C., Song, H.: Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems. Quantum Inf. Process. 16, 80 (2017)

    ADS  Google Scholar 

  18. Roulet, A., Bruder, C.: Quantum synchronization and entanglement generation. Phys. Rev. Lett. 121, 063601 (2018)

    ADS  Google Scholar 

  19. Kong, X., Xin, T., Wei, S.-J., Wang, B., Wang, Y., Li, K., Long, G.-L.: Demonstration of multipartyquantum clock synchronization. Quantum Inf. Process. 17, 297 (2018)

    ADS  Google Scholar 

  20. Sonar, S., Hajdušek, M., Mukherjee, M., Fazio, R., Vedral, V., Vinjanampathy, S., Kwek, L.-C.: Squeezing enhances quantum synchronization. Phys. Rev. Lett. 120, 163601 (2018)

    ADS  Google Scholar 

  21. Ameri, V., Eghbali-Arani, M., Rafiee, M.: Synchronization of a periodic modulation of mirrors in an optomechanical system. Quantum Inf. Process. 18, 349 (2019)

    ADS  MathSciNet  Google Scholar 

  22. Eneriz, H., Rossatto, D.Z., Cárdenas-López, F.A., Solano, E., Sanz, M.: Degree of quantumness in quantum synchronization. Sci. Rep. 9, 19933 (2019)

    ADS  Google Scholar 

  23. Ullah, M.A., Rehman, J., Shin, H.: Quantum frequency synchronization of distant clock oscillators. Quantum Inf. Process. 19, 144 (2020)

    ADS  MathSciNet  Google Scholar 

  24. Laskar, A.W., Adhikary, P., Mondal, S., Katiyar, P., Vinjanampathy, S., Ghosh, S.: Observation of quantum phase synchronization in spin-1 atoms. Phys. Rev. Lett. 125, 013601 (2020)

    ADS  Google Scholar 

  25. Ma, S.-Q., Zheng, X., Zhang, G.-F.: Criterion of quantum phase synchronization in continuous variable systems by local measurement. Quantum Inf. Process. 19, 86 (2020)

    ADS  MathSciNet  Google Scholar 

  26. Kato, Y., Nakao, H.: Enhancement of quantum synchronization via continuous measurement and feedback control. New J. Phys. 23, 013007 (2021)

    ADS  MathSciNet  Google Scholar 

  27. Krithika, V.R., Solanki, P., Vinjanampathy, S., Mahesh, T.S.: Observation of quantum phase synchronization in a nuclear-spin system. Phys. Rev. A 105, 062206 (2022)

    ADS  Google Scholar 

  28. Shen, Y., Soh, H.Y., Fan, W., Kwek, L.-C.: Enhancing quantum synchronization through homodyne measurement, noise, and squeezing. Phys. Rev. E 108, 024204 (2023)

    ADS  Google Scholar 

  29. Zhang, L., Xu, X., Zhang, W.: The classical and quantum synchronization between two scattering modes in Bose-Einstein condensates. Eur. Phys. J. Plus 135, 202 (2020)

    Google Scholar 

  30. Giorgi, G.L., Cabot, A., Zambrini, R.: Transient Synchronization in Open Quantum Systems, in Advances in Open Systems and Fundamental Tests of Quantum Mechanics, vol. 237, pp. 73–89. Springer International Publishing, Cham (2019)

    Google Scholar 

  31. Zhirov, O.V., Shepelyansky, D.L.: Quantum synchronization and entanglement of two qubits coupled to a driven dissipative resonator. Phys. Rev. B 80, 014519 (2009)

    ADS  Google Scholar 

  32. Roulet, A., Bruder, C.: Synchronizing the smallest possible system. Phys. Rev. Lett. 121, 053601 (2018)

    ADS  Google Scholar 

  33. Koppenhöfer, M., Roulet, A.: Optimal synchronization deep in the quantum regime: Resource and fundamental limit. Phys. Rev. A 99, 043804 (2019)

    ADS  Google Scholar 

  34. Parra-López, Á., Bergli, J.: Synchronization in two-level quantum systems. Phys. Rev. A 101, 062104 (2020)

    ADS  MathSciNet  Google Scholar 

  35. Xiao, X., Lu, T.-X., Zhong, W.-J., Li, Y.-L.: Classical-driving-assisted quantum synchronization in non-Markovian environments. Phys. Rev. A 107, 022221 (2023)

    ADS  MathSciNet  Google Scholar 

  36. Karpat, G., Yalçınkaya, İ, Çakmak, B., Giorgi, G.L., Zambrini, R.: Synchronization and non-Markovianity in open quantum systems. Phys. Rev. A 103, 062217 (2021)

    ADS  MathSciNet  Google Scholar 

  37. Giorgi, G.L., Plastina, F., Francica, G., Zambrini, R.: Spontaneous synchronization and quantum correlation dynamics of open spin systems. Phys. Rev. A 88, 042115 (2013)

    ADS  Google Scholar 

  38. Karpat, G., Yalçınkaya, İ, Çakmak, B.: Quantum synchronization of few-body systems under collective dissipation. Phys. Rev. A 101, 042121 (2020)

    ADS  Google Scholar 

  39. Nakao, H., Arai, K., Kawamura, Y.: Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators. Phys. Rev. Lett. 98, 184101 (2007)

    ADS  Google Scholar 

  40. Shajan, E., Asir, M.P., Dixit, S., Kurths, J., Shrimali, M.D.: Enhanced synchronization due to intermittent noise. New J. Phys. 23, 112001 (2021)

    ADS  Google Scholar 

  41. Martineau, S., Saffold, T., Chang, T.T., Ronellenfitsch, H.: Enhancing synchronization by optimal correlated noise. Phys. Rev. Lett. 128, 098301 (2022)

    ADS  MathSciNet  Google Scholar 

  42. Imai, Y., Tsunegi, S., Nakajima, K., Taniguchi, T.: Noise-induced synchronization of spin-torque oscillators. Phys. Rev. B 105, 224407 (2022)

    ADS  Google Scholar 

  43. Schmolke, F., Lutz, E.: Noise-induced quantum synchronization. Phys. Rev. Lett. 129, 250601 (2022)

    ADS  MathSciNet  Google Scholar 

  44. Ali, M. M., Chen, P.-W., Radhakrishnan, C.: Quantum synchronization due to information backflow. arXiv:2205.08822

  45. Galperin, Y.M., Altshuler, B.L., Bergli, J., Shantsev, D.V.: Non-gaussian low-frequency noise as a source of qubit decoherence. Phys. Rev. Lett. 96, 097009 (2006)

    ADS  Google Scholar 

  46. Faoro, L., Viola, L.: Dynamical suppression of \(1/f\) noise processes in qubit systems. Phys. Rev. Lett. 92, 117905 (2004)

    ADS  Google Scholar 

  47. Kuopanportti, P., Möttönen, M., Bergholm, V., Saira, O.-P., Zhang, J., Whaley, K.B.: Suppression of \(1/f^{\alpha }\) noise in one-qubit systems. Phys. Rev. A 77, 032334 (2008)

    ADS  Google Scholar 

  48. Ceriotti, M., Bussi, G., Parrinello, M.: Nuclear quantum effects in solids using a colored-noise thermostat. Phys. Rev. Lett. 103, 030603 (2009)

    ADS  Google Scholar 

  49. Burkard, G.: Non-Markovian qubit dynamics in the presence of \(1/f\) noise. Phys. Rev. B 79, 125317 (2009)

    ADS  Google Scholar 

  50. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87, 052328 (2013)

    ADS  Google Scholar 

  51. Benedetti, C., Paris, M.G.A., Maniscalco, S.: Non-Markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)

    ADS  Google Scholar 

  52. Ludviksson, A., Kree, R., Schmid, A.: Low-frequency \(1/f\) fluctuations of resistivity in disordered metals. Phys. Rev. Lett. 52, 950 (1984)

    ADS  Google Scholar 

  53. Weissman, M.B.: \(1/f\) noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537 (1988)

    ADS  Google Scholar 

  54. Kakuyanagi, K., Meno, T., Saito, S., Nakano, H., Semba, K., Takayanagi, H., Deppe, F., Shnirman, A.: Dephasing of a superconducting flux qubit. Phys. Rev. Lett. 98, 047004 (2007)

    ADS  Google Scholar 

  55. Rower, D.A., Ateshian, L., Li, L.H., Hays, M., Bluvstein, D., Ding, L., Kannan, B., Almanakly, A., Braumüller, J., Kim, D.K., Melville, A., Niedzielski, B.M., Schwartz, M.E., Yoder, J.L., Orlando, T.P., Wang, J.I.-J., Gustavsson, S., Grover, J.A., Serniak, K., Comin, R., Oliver, W.D.: Evolution of \(1/f\) flux noise in superconducting qubits with weak magnetic fields. Phys. Rev. Lett. 130, 220602 (2023)

Download references

Acknowledgements

We thank the support from the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunication (Grant No. 202310293071Y) and the Natural Science Foundation of China (Grant No. 62375140).

Author information

Authors and Affiliations

Authors

Contributions

Cheng proposed the idea. Huang and Ma carried out the calculations and contributed equally to this work. Huang, Ma, Wu, and Cheng wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to W. W. Cheng.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X.Y., Ma, Q., Wu, M.K. et al. Classical colored noise-induced quantum synchronization. Quantum Inf Process 22, 431 (2023). https://doi.org/10.1007/s11128-023-04194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04194-9

Keywords

Navigation