Skip to main content
Log in

Efficient generation of Greenberger–Horne–Zeilinger states of N driven qubits mediated by a cavity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a protocol for generating N-qubit Greenberger–Horne–Zeilinger (GHZ) states in a superconducting system. The physical model contains N superconducting flux qubits and a cavity, where the N superconducting flux qubits are coupled to the cavity simultaneously. The preparation of GHZ states can be realized in one step by applying a pair of classical fields to each qubit. The protocol is promising for generating N-qubit GHZ states because the operation time is independent of the number of the qubits in the strong drive regime. Furthermore, we consider the effects of random noise and decoherence, and numerical simulations show that the protocol is insensitive to these disturbing factors. Therefore, the protocol may be useful in the generation of GHZ states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the article.

References

  1. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000). https://doi.org/10.1103/PhysRevLett.85.2392

    Article  ADS  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  Google Scholar 

  3. Friis, N., Vitagliano, G., Malik, M., Huber, M.: Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72 (2019). https://doi.org/10.1038/s42254-018-0003-5

    Article  Google Scholar 

  4. Man, Z.X., Xia, Y.J., An, N.B.: Robustness of multiqubit entanglement against local decoherence. Phys. Rev. A 78, 064301 (2008). https://doi.org/10.1103/PhysRevA.78.064301

    Article  ADS  Google Scholar 

  5. Xiao, L., Lu Long, G., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004). https://doi.org/10.1103/PhysRevA.69.052307

    Article  ADS  Google Scholar 

  6. Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998). https://doi.org/10.1103/PhysRevA.57.2208

    Article  ADS  MathSciNet  Google Scholar 

  7. Facchi, P., Florio, G., Pascazio, S., Pepe, F.V.: Greenberger–Horne–Zeilinger States and few-body Hamiltonians. Phys. Rev. Lett. 107, 260502 (2011). https://doi.org/10.1103/PhysRevLett.107.260502

    Article  ADS  Google Scholar 

  8. Michler, M., Mattle, K., Weinfurter, H., Zeilinger, A.: Interferometric bell-state analysis. Phys. Rev. A 53, R1209 (1996). https://doi.org/10.1103/PhysRevA.53.R1209

    Article  ADS  Google Scholar 

  9. Ghosh, S., Kar, G., Roy, A., Sen(De), A., Sen, U.: Distinguishability of bell states. Phys. Rev. Lett. 87, 277902 (2001). https://doi.org/10.1103/PhysRevLett.87.277902

    Article  ADS  MathSciNet  Google Scholar 

  10. Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger–Horne–Zeilinger versus \(W\) states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008). https://doi.org/10.1103/PhysRevA.78.012312

    Article  ADS  Google Scholar 

  11. Ma, J., Huang, Y.X., Wang, X.G., Sun, C.P.: Quantum fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011). https://doi.org/10.1103/PhysRevA.84.022302

    Article  ADS  Google Scholar 

  12. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001). https://doi.org/10.1103/PhysRevA.63.054301

    Article  ADS  Google Scholar 

  13. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Multiparticle interferometry and the superposition principle. Phys. Tod. 46, 22 (1993). https://doi.org/10.1063/1.881360

    Article  Google Scholar 

  14. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Cah. Rev. Theor. 403, 515 (2000). https://doi.org/10.1038/35000514

    Article  Google Scholar 

  15. Zhang, C., Huang, Y.F., Wang, Z., Liu, B.H., Li, C.F., Guo, G.C.: Experimental Greenberger–Horne–Zeilinger-type six-photon quantum nonlocality. Phys. Rev. Lett. 115, 260402 (2015). https://doi.org/10.1103/PhysRevLett.115.260402

    Article  ADS  Google Scholar 

  16. Misra, B., Sudarshan, E.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977). https://doi.org/10.1063/1.523304

    Article  ADS  MathSciNet  Google Scholar 

  17. Gerry, C.C.: Preparation of a four-atom Greenberger–Horne–Zeilinger state. Phys. Rev. A 53, 4591 (1996). https://doi.org/10.1103/PhysRevA.53.4591

    Article  ADS  Google Scholar 

  18. Wu, S., Zhang, Y.: Multipartite pure-state entanglement and the generalized Greenberger–Horne–Zeilinger states. Phys. Rev. A 63, 012308 (2000). https://doi.org/10.1103/PhysRevA.63.012308

    Article  ADS  Google Scholar 

  19. Cohen, O., Brun, T.A.: Distillation of Greenberger–Horne–Zeilinger states by selective information manipulation. Phys. Rev. Lett. 84, 5908 (2000). https://doi.org/10.1103/PhysRevLett.84.5908

    Article  ADS  Google Scholar 

  20. Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001). https://doi.org/10.1103/PhysRevLett.87.230404

    Article  ADS  Google Scholar 

  21. Yang, C.P., Han, S.: Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED. Phys. Rev. A 70, 062323 (2004). https://doi.org/10.1103/PhysRevA.70.062323

    Article  ADS  Google Scholar 

  22. Guerra, E.: Realization of GHZ states and the GHZ test via cavity QED. J. Mod. Opt. 52, 1275 (2005). https://doi.org/10.1080/09500340512331330855

    Article  ADS  Google Scholar 

  23. Yang, C.P.: Preparation of \(n\)-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: an approach with tolerance to nonidentical qubit-cavity coupling constants. Phys. Rev. A 83, 062302 (2011). https://doi.org/10.1103/PhysRevA.83.062302

    Article  ADS  Google Scholar 

  24. Chen, Z.H., Pei, P., Zhang, F.Y., Song, H.S.: One-step preparation of three-particle Greenberger–Horne–Zeilinger states in cavity quantum electrodynamics. J. Opt. Soc. Am. B 29, 1744 (2012). https://doi.org/10.1364/JOSAB.29.001744

    Article  ADS  Google Scholar 

  25. Ryu, J., Lee, C., Żukowski, M., Lee, J.: Greenberger–Horne–Zeilinger theorem for \(N\) qudits. Phys. Rev. A 88, 042101 (2013). https://doi.org/10.1103/PhysRevA.88.042101

    Article  ADS  Google Scholar 

  26. Yang, C.P., Su, Q.P., Zhang, F.Y., Zheng, S.B.: Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. Opt. Lett. 39, 3312 (2014). https://doi.org/10.1364/OL.39.003312

    Article  ADS  Google Scholar 

  27. Zhang, C.L., Li, W.Z., Chen, M.F.: Generation of W state and GHZ state of multiple atomic ensembles via a single atom in a nonresonant cavity. Opt. Commun. 312, 269 (2014). https://doi.org/10.1016/j.optcom.2013.09.047

    Article  ADS  Google Scholar 

  28. Shan, W.J., Chen, Y.H., Xia, Y., Song, J.: One-step deterministic generation of \( N \)-atom Greenberger–Horne–Zeilinger states in separate coupled cavities via quantum Zeno dynamics. J. Mod. Opt. 62, 1591 (2015). https://doi.org/10.1080/09500340.2015.1052857

    Article  ADS  Google Scholar 

  29. Shan, W.J., Xia, Y., Chen, Y.H., Song, J.: Fast generation of \(N\)-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quan. Inf. Pro. 15, 2359 (2016). https://doi.org/10.1007/s11128-016-1284-1

    Article  MathSciNet  Google Scholar 

  30. Wu, J.L., Song, C., Xu, J., Yu, L., Ji, X., Zhang, S.: Adiabatic passage for one-step generation of \(N\)-qubit Greenberger–Horne–Zeilinger states of superconducting qubits via quantum Zeno dynamics. Quan. Inf. Pro. 15, 3663 (2016). https://doi.org/10.1007/s11128-016-1366-0

    Article  MathSciNet  Google Scholar 

  31. Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Entangling superconducting qubits in a multi-cavity system. New J. Phys. 18, 013025 (2016). https://doi.org/10.1088/1367-2630/18/1/013025

    Article  ADS  Google Scholar 

  32. Zhang, X., Chen, Y.H., Shi, Z.C., Shan, W.J., Song, J., Xia, Y.: Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states. Quan. Inf. Pro. 16, 1 (2017). https://doi.org/10.1007/s11128-017-1758-9

    Article  MathSciNet  Google Scholar 

  33. Bergamasco, N., Menotti, M., Sipe, J.E., Liscidini, M.: Generation of path-encoded Greenberger–Horne–Zeilinger states. Phys. Rev. Appl. 8, 054014 (2017). https://doi.org/10.1103/PhysRevApplied.8.054014

    Article  ADS  Google Scholar 

  34. Song, C., Xu, K., Li, H., Zhang, Y.R., Zhang, X., Liu, W., Guo, Q., Wang, Z., Ren, W., Hao, J., et al.: Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574 (2019). https://doi.org/10.1126/science.aay0600

    Article  ADS  MathSciNet  Google Scholar 

  35. Li, Z., Han, Y.G., Zhu, H.: Optimal verification of Greenberger–Horne–Zeilinger states. Phys. Rev. Appl. 13, 054002 (2020). https://doi.org/10.1103/PhysRevApplied.13.054002

    Article  ADS  Google Scholar 

  36. Unanyan, R.G., Vitanov, N.V., Bergmann, K.: Preparation of entangled states by adiabatic passage. Phys. Rev. Lett. 87, 137902 (2001). https://doi.org/10.1103/PhysRevLett.87.137902

    Article  ADS  Google Scholar 

  37. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009). https://doi.org/10.1088/1751-8113/42/36/365303

    Article  MathSciNet  Google Scholar 

  38. Chen, X., Torrontegui, E., Muga, J.G.: Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011). https://doi.org/10.1103/PhysRevA.83.062116

    Article  ADS  Google Scholar 

  39. Takahashi, K.: Transitionless quantum driving for spin systems. Phys. Rev. E 87, 062117 (2013). https://doi.org/10.1103/PhysRevE.87.062117

    Article  ADS  Google Scholar 

  40. Han, J.X., Wu, J.L., Wang, Y., Xia, Y., Jiang, Y.Y., Song, J.: Large-scale Greenberger–Horne–Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Phys. Rev. A 103, 032402 (2021). https://doi.org/10.1103/PhysRevA.103.032402

    Article  ADS  Google Scholar 

  41. Shore, B.W., Knight, P.L.: The Jaynes–Cummings model. J. Mod. Opt. 40, 1195 (1993). https://doi.org/10.1080/09500349314551321

    Article  ADS  MathSciNet  Google Scholar 

  42. Bonatsos, D., Daskaloyannis, C., Lalazissis, G.A.: Unification of Jaynes–Cummings models. Phys. Rev. A 47, 3448 (1993). https://doi.org/10.1103/PhysRevA.47.3448

    Article  ADS  MathSciNet  Google Scholar 

  43. Yu, S., Rauch, H., Zhang, Y.: Algebraic approach to the Jaynes–Cummings models. Phys. Rev. A 52, 2585 (1995). https://doi.org/10.1103/PhysRevA.52.2585

    Article  ADS  Google Scholar 

  44. Zou, X., Pahlke, K., Mathis, W.: Quantum phase-gate implementation for trapped ions in thermal motion. Phys. Rev. A 66, 044307 (2002). https://doi.org/10.1103/PhysRevA.66.044307

    Article  ADS  Google Scholar 

  45. Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013). https://doi.org/10.1103/PhysRevA.87.022320

    Article  ADS  Google Scholar 

  46. Kang, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Erratum: flexible scheme for the implementation of nonadiabatic geometric quantum computation. Phys. Rev. A 101, 049902 (2020). https://doi.org/10.1103/PhysRevA.101.049902

    Article  ADS  Google Scholar 

  47. Mao, Y., Yu, K., Isakov, M.S., Wu, J., Dunn, M.L., Jerry Qi, H.: Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 5, 1 (2015). https://doi.org/10.1038/srep13616

    Article  Google Scholar 

  48. Zhao, B., Tan, Y., Tsai, W.Y., Qi, J., Xie, C., Lu, L., Schwartz, L.H.: Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep23428

    Article  Google Scholar 

  49. Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Nonadiabatic holonomic quantum computation using Rydberg blockade. Phys. Rev. A 97, 042336 (2018). https://doi.org/10.1103/PhysRevA.97.042336

    Article  ADS  Google Scholar 

  50. Mirrahimi, M., Leghtas, Z., Albert, V.V., Touzard, S., Schoelkopf, R.J., Jiang, L., Devoret, M.H.: Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014). https://doi.org/10.1088/1367-2630/16/4/045014

    Article  ADS  Google Scholar 

  51. Liu, T., Zhou, Y.H., Wu, Q.C., Yang, C.P.: Generation of a GHZ-type optical entangled coherent state without measurements. Appl. Phys. Lett. 121, 244001 (2022). https://doi.org/10.1063/5.0134394

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11575045, 11874114, the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant 2020J06011, the Foundation of Fujian Educational Committee under Grant FBJY20230048, and Project from Fuzhou University under Grant JG2020001-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The calculation of the system evolution

Assuming that

$$\begin{aligned} |+\rangle _n=\frac{1}{\sqrt{2}}\left( |e\rangle _n+|g\rangle _n\right) ,\nonumber \\ |-\rangle _n=\frac{1}{\sqrt{2}}\left( |e\rangle _n-|g\rangle _n\right) , \end{aligned}$$
(A.1)

then, we get

$$\begin{aligned} |g\rangle _n=\frac{1}{\sqrt{2}}\left( |+\rangle _n-|-\rangle _n\right) ,\nonumber \\ |e\rangle _n=\frac{1}{\sqrt{2}}\left( |+\rangle _n+|-\rangle _n\right) . \end{aligned}$$
(A.2)

We define the symmetric Dicke state with k qubits being in the \(|+\rangle \) as

$$\begin{aligned} \left| \frac{N}{2},-\frac{N}{2}+k\right\rangle =\left( C_N^k\right) ^{-1/2}\sum _jP_j\left( |+_1,+_2,\ldots ,+_k,-_{k+1},-_{k+2},\ldots ,-_{N}\rangle \right) ,\nonumber \\ \end{aligned}$$
(A.3)

where \(\{P_j\}\) denotes the set of all distinct permutation of the qubits. Therefore, the tensor product states of N qubits are

$$\begin{aligned} \bigotimes _{n=1}^{N}|g\rangle _n= & {} \bigotimes _{n=1}^{N}\frac{1}{\sqrt{2}}\left( |+\rangle _n-|-\rangle _n\right) , \nonumber \\= & {} \frac{1}{\sqrt{2^N}}\sum _{k=0}^{N}\sqrt{C_N^k}(-1)^k\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle , \nonumber \\= & {} \frac{1}{\sqrt{2^N}}\left( \sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle -\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) ,\nonumber \\ \bigotimes _{n=1}^{N}|e\rangle _n= & {} \bigotimes _{n=1}^{N}\frac{1}{\sqrt{2}}\left( |+\rangle _n+|-\rangle _n\right) ,\nonumber \\= & {} \frac{1}{\sqrt{2^N}}\sum _{k=0}^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle ,\nonumber \\= & {} \frac{1}{\sqrt{2^N}}\left( \sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle +\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) ,\nonumber \\ \end{aligned}$$
(A.4)

respectively. According to Eq. (A.4), when the evolution operator \(U(\tau )\) acts on the initial state \(|\psi _0\rangle \), for \(N=2\eta \), the final state of the system \(\vert \psi _f\rangle \) can be written as

$$\begin{aligned} \vert \psi _f\rangle= & {} U(\tau )|\psi _0\rangle \nonumber \\= & {} \exp \left[ -i \phi S_x\right] \exp \left[ i \frac{\pi }{2}S_x^2\right] \left( \bigotimes _{n=1}^{N}\left| g\rangle _n\right) |0\right\rangle _c\nonumber \\= & {} \exp \left[ -i \phi S_x\right] \exp \left[ i \frac{\pi }{2}S_x^2\right] \nonumber \\{} & {} \frac{1}{\sqrt{2^N}}\left( \sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right. \nonumber \\{} & {} \left. -\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c,\nonumber \\= & {} \exp \left[ -i \phi S_x\right] \frac{1}{\sqrt{2^N}}\nonumber \\{} & {} \left( \sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}e^{i\frac{\pi }{2}(k-\eta )^2}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right. \nonumber \\{} & {} \left. -\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}e^{i\frac{\pi }{2}(k-\eta )^2}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c.\ \ \ \ \end{aligned}$$
(A.5)

When \(\eta \) is odd, Eq. (A.5) can be reduced to

$$\begin{aligned} \vert \psi _f\rangle= & {} U(\tau )|\psi _0\rangle \nonumber \\= & {} \exp \left[ -i \phi S_x\right] \frac{1}{\sqrt{2^N}}\left( i\sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}|\frac{N}{2},\right. \nonumber \\{} & {} \left. -\frac{N}{2}+k\rangle -\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c,\nonumber \\= & {} \exp \left[ -i \phi S_x\right] \left[ \frac{i}{2}\big (\bigotimes _{n=1}^{N}|g\rangle _n+\bigotimes _{n=1}^{N}|e\rangle _n\big ) -\frac{1}{2}\left( \bigotimes _{n=1}^{N}|e\rangle _n-\bigotimes _{n=1}^{N}|g\rangle _n\right) \right] |0\rangle _c,\nonumber \\= & {} \exp \left[ -i \phi S_x\right] \left[ \frac{i+1}{2}\bigotimes _{n=1}^{N}|g\rangle _n+\frac{i-1}{2}\bigotimes _{n=1}^{N}|e\rangle _n\right] |0\rangle _c,\nonumber \\{} & {} \Rightarrow \exp \left[ -i \phi S_x\right] \frac{1}{\sqrt{2}}\left( \bigotimes _{n=1}^{N}|g\rangle _n+i \bigotimes _{n=1}^{N}|e\rangle _n\right) |0\rangle _c. \end{aligned}$$
(A.6)

When \(\eta \) is even, Eq. (A.5) can be reduced to

$$\begin{aligned} \vert \psi _f\rangle= & {} U(\tau )|\psi _0\rangle \nonumber \\= & {} \exp \left[ -i \phi S_x\right] \frac{1}{\sqrt{2^N}}\left( \sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}\bigg |\frac{N}{2},\right. \nonumber \\{} & {} \left. -\frac{N}{2}+k\bigg \rangle -i\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}|\frac{N}{2},-\frac{N}{2}+k\rangle \right) |0\rangle _c,\nonumber \\= & {} \exp \left[ -i \phi S_x\right] \left[ \frac{1}{2}\left( \bigotimes _{n=1}^{N}|g\rangle _n+\bigotimes _{n=1}^{N}|e\rangle _n\right) -\frac{i}{2}\left( \bigotimes _{n=1}^{N}|e\rangle _n-\bigotimes _{n=1}^{N}|g\rangle _n\right) \right] |0\rangle _c, \nonumber \\= & {} \exp \left[ -i \phi S_x\right] \left[ \frac{i+1}{2}\bigotimes _{n=1}^{N}|g\rangle _n+\frac{1-i}{2}\bigotimes _{n=1}^{N}|e\rangle _n\right] |0\rangle _c,\nonumber \\{} & {} \Rightarrow \exp \left[ -i \phi S_x\right] \frac{1}{\sqrt{2}}\left( \bigotimes _{n=1}^{N}\left| g\rangle _n-i\bigotimes _{n=1}^{N}|e\rangle _n\right) |0\right\rangle _c. \end{aligned}$$
(A.7)

Therefore, for the case that N is even, setting \(\phi =0\), the N-qubit GHZ states can be obtained.

For \(N=2\eta -1\), the final state of the system \(\vert \psi _f\rangle \) can be written as

$$\begin{aligned} \vert \psi _f\rangle= & {} U(\tau )|\psi _0\rangle \nonumber \\= & {} \exp \left[ -i \phi S_x\right] \exp \left[ i \frac{\pi }{2}S_x^2\right] \left( \bigotimes _{n=1}^{N}|g\rangle _n\right) |0\rangle _c \nonumber \\= & {} \exp \left[ -i \phi S_x\right] \exp \left[ i \frac{\pi }{2}S_x^2\right] \frac{1}{\sqrt{2^N}}\nonumber \\{} & {} \left( \sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle -\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c,\nonumber \\= & {} \exp \left[ -i \phi S_x\right] \frac{1}{\sqrt{2^N}}\nonumber \\{} & {} \left( \sum _{k=0,2,4\ldots }^{N}\sqrt{C_N^k}e^{i\frac{\pi }{2}\left( k-\eta -\frac{1}{2}\right) ^2}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right. \nonumber \\{} & {} \left. -\sum _{k=1,3,5\ldots }^{N}\sqrt{C_N^k}e^{i\frac{\pi }{2}\left( k-\eta -\frac{1}{2}\right) ^2}\left| \frac{N}{2}, -\frac{N}{2}+k\right\rangle \right) |0\rangle _c,\nonumber \\= & {} \exp \left[ -i \phi S_x\right] \exp \left[ -i \frac{\pi }{2}S_x\right] \frac{1}{\sqrt{2^N}}\nonumber \\{} & {} \left( \sum _{k=0,2,4\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}e^{i\frac{\pi }{2}(k-\eta )^2}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right. \nonumber \\{} & {} \left. -\sum _{k=1,3,5\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}e^{i\frac{\pi }{2}(k-\eta )^2}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c. \end{aligned}$$
(A.8)

Thus, for the case that N is odd, setting \(\phi =-\frac{\pi }{2}\), Eq. (A.8) is reduced to

$$\begin{aligned} \vert \psi _f\rangle= & {} \frac{1}{\sqrt{2^N}}\left( \sum _{k=0,2,4\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}e^{i\frac{\pi }{2}(k-\eta )^2}\bigg |\frac{N}{2},\right. \nonumber \\{} & {} \left. -\frac{N}{2}+k\bigg \rangle \ -\sum _{k=1,3,5\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}e^{i\frac{\pi }{2}(k-\eta )^2}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c. \end{aligned}$$
(A.9)

When \(\eta \) is odd, Eq. (A.9) can be reduced to

$$\begin{aligned} \vert \psi _f\rangle= & {} \frac{1}{\sqrt{2^N}}\left( i\sum _{k=0,2,4\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \ -\sum _{k=1,3,5\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c, \nonumber \\= & {} \left[ \frac{1}{2}\left( \bigotimes _{n=1}^{N}|g\rangle _n+\bigotimes _{n=1}^{N}|e\rangle _n\right) -\frac{i}{2}\left( \bigotimes _{n=1}^{N}|e\rangle _n-\bigotimes _{n=1}^{N}|g\rangle _n\right) \right] |0\rangle _c, \nonumber \\= & {} \left[ \frac{i+1}{2}\bigotimes _{n=1}^{N}|g\rangle _n+\frac{1-i}{2}\bigotimes _{n=1}^{N}|e\rangle _n\right] |0\rangle _c,\nonumber \\{} & {} \Rightarrow \frac{1}{\sqrt{2}}\left( \bigotimes _{n=1}^{N}|g\rangle _n-i\bigotimes _{n=1}^{N}|e\rangle _n\right) |0\rangle _c. \end{aligned}$$
(A.10)

When \(\eta \) is even, Eq. (A.9) can be reduced to

$$\begin{aligned} \vert \psi _f\rangle= & {} \frac{1}{\sqrt{2^N}}\left( \sum _{k=0,2,4\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \ -i\sum _{k=1,3,5\ldots }^{N}\!\!\!\!\!\sqrt{C_N^k}\left| \frac{N}{2},-\frac{N}{2}+k\right\rangle \right) |0\rangle _c,\nonumber \\= & {} \left[ \frac{i}{2}\left( \bigotimes _{n=1}^{N}|g\rangle _n+\bigotimes _{n=1}^{N}|e\rangle _n\right) -\frac{1}{2}\left( \bigotimes _{n=1}^{N}|e\rangle _n-\bigotimes _{n=1}^{N}|g\rangle _n\right) \right] |0\rangle _c, \nonumber \\= & {} \left[ \frac{i+1}{2}\bigotimes _{n=1}^{N}|g\rangle _n+\frac{i-1}{2}\bigotimes _{n=1}^{N}|e\rangle _n\right] |0\rangle _c,\nonumber \\{} & {} \Rightarrow \frac{1}{\sqrt{2}}\left( \bigotimes _{n=1}^{N}|g\rangle _n+i \bigotimes _{n=1}^{N}|e\rangle _n\right) |0\rangle _c. \end{aligned}$$
(A.11)

Therefore, the N-qubit GHZ states can be obtained. The calculations are the same as that in the case where N is even.

Appendix B: The derivation of the evolution operator

Due to

$$\begin{aligned} R_2=\exp \left[ \frac{-gS_x\left( a^{\dag }-a\right) }{\Delta }\right] ,\ \ \ U'_R(t)=\exp \left[ -i\left( \Delta t a^{\dag }a-\frac{g^2t}{\Delta }S_x^2+\Omega 'tS_x\right) \right] ,\nonumber \\ \end{aligned}$$
(B1)

we have

$$\begin{aligned} U(t)= & {} R_2U'_RR_2^{\dag } \nonumber \\= & {} \exp \left[ \frac{-gS_x\left( a^{\dag }-a\right) }{\Delta }\right] \exp \left[ -i\left( \Delta t a^{\dag }a-\frac{g^2t}{\Delta }S_x^2+\Omega 'tS_x\right) \right] \nonumber \\{} & {} \exp \left[ \frac{-gS_x\left( a-a^{\dag }\right) }{\Delta }\right] \nonumber \\= & {} \exp \left[ \frac{-gS_x\left( a^{\dag }-a\right) }{\Delta }\right] \exp \left[ -i \Delta a^{\dag }at\right] \exp \left[ \frac{-gS_x\left( a-a^{\dag }\right) }{\Delta }\right] \nonumber \\{} & {} \exp \left[ \frac{i g^2t S_x^2}{\Delta }\right] \exp \left[ -i \Omega ' t S_x\right] \nonumber \\= & {} \exp \left[ -i \Delta a^{\dag }at\right] \nonumber \\{} & {} \exp \left[ \frac{-gS_x}{\Delta }\left( a^{\dag }e^{i \Delta t}-ae^{-i \Delta t}\right) \right] \nonumber \\{} & {} \exp \left[ \frac{-gS_x\left( a-a^{\dag }\right) }{\Delta }\right] \exp \left[ \frac{i g^2t S_x^2}{\Delta }\right] \exp \left[ -i \Omega ' t S_x\right] \nonumber \\= & {} \exp \left[ -i \Delta a^{\dag }at\right] \exp \left[ \frac{-gS_x}{\Delta }\left[ a^{\dag }\left( e^{i \Delta t}-1\right) -a\left( e^{-i \Delta t}-1\right) \right] \right] \nonumber \\{} & {} \exp \left[ \frac{g^2S_x^2}{2\Delta }\left( e^{-i \Delta t}-e^{i \Delta t}\right) \right] \exp \left[ \frac{i g^2t S_x^2}{\Delta }\right] \nonumber \\{} & {} \times \exp \left[ -i \Omega ' t S_x\right] .\ \ \ \ \end{aligned}$$
(B2)

Here we used the relations

$$\begin{aligned}{} & {} \exp \left[ \frac{-gS_x(a^{\dag }-a)}{\Delta }\right] \exp \left[ -i \Delta a^{\dag }at\right] \nonumber \\{} & {} \quad =\exp \left[ -i \Delta a^{\dag }at\right] \exp \left[ \frac{-gS_x}{\Delta }\left( a^{\dag }e^{i \Delta t}-ae^{-i \Delta t}\right) \right] . \end{aligned}$$
(B3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DS., Kang, YH., Chen, YH. et al. Efficient generation of Greenberger–Horne–Zeilinger states of N driven qubits mediated by a cavity. Quantum Inf Process 23, 2 (2024). https://doi.org/10.1007/s11128-023-04199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04199-4

Keywords

Navigation