Skip to main content
Log in

Thermal quantum Fisher information and influence of magnetic field distribution in a two-qubit XXZ spin model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we investigate the quantum Fisher information (QFI) of a thermal two-qubit XXZ Heisenberg spin model. Here, we adopt the average QFI with respect to the local orthonormal observable bases (Li and Luo in Phys Rev A 88:014301, 2013). Meanwhile, the QFI is compared with two other quantum correlations (concurrence and trace distance discord). Their dependence on uniform magnetic field, non-uniform magnetic field, and coupling constant is calculated and discussed in details. Their evolution behaviors in terms of various model parameters are compared. The results show that at finite temperature, the concurrence is weaker, while QFI and trace distance discord is stronger. And even if the temperature is higher, QFI’s change with the magnetic field is still obvious, while the trace distance discord is almostly the same and indistinguishable under different fields. Particularly, it can be seen that QFI is asymmetric with respect to coupling strength zero based on which we can judge whether the system is ferromagnetic or antiferromagnetic. In addition, the modification effect of non-uniform field is more evident for the QFI. Finally, their thermal evolution behaviors are discussed, and quantum phase transition points can be rapidly derived from the evolutionary properties under uniform field. Our numerical results are well consistent with theoretical analysis. On the whole, it is demonstrated that the QFI should be a more effective order parameter of the studied spin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  3. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  5. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  7. Holevo, A.S.: Statistical Structure of Quantum Theory. North-Holland, Amsterdam (1982)

    Google Scholar 

  8. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  9. Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    Google Scholar 

  10. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2006)

    Google Scholar 

  11. Hübner, M.: Explicit computation of the bures distance for density-matrices. Phys. Lett. A 163, 239 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hübner, M.: Computation of Uhlmann parallel transport for density-matrices and the bures metric on 3-dimensional Hilbert-space. Phys. Lett. A 179, 226 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  13. Taddei, M.M., Escher, B.M., Davidovich, L., deMatos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)

    Article  ADS  Google Scholar 

  14. Li, L., Wang, Q.-W., Shen, S.-Q., Li, M.: Quantum coherence measures based on Fisher information with applications. Phys. Rev. A 103, 012401 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  15. Mohamed, A.-B.A., Metwally, N.: Quantifying the non-classical correlation of a two-atom system nonlinearly interacting with a coherent cavity: local quantum Fisher information and Bures distance entanglement. Nonlinear Dyn. 104, 2573 (2021)

    Article  Google Scholar 

  16. Li, N., Luo, S.L.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  17. Sun, Z., Ma, J., Lu, X.-M., Wang, X.G.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  18. Liu, X.M., Cheng, W.W., Liu, J.-M.: Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii–Moriya interaction. Sci. Rep. 6, 19359 (2016)

    Article  ADS  Google Scholar 

  19. Hauke, P., Heyl, M., Tagliacozzo, L., Zoller, P.: Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12(8), 778 (2016)

    Article  Google Scholar 

  20. Li, Y.L., Sun, F.X., Yang, J., Xiao, X.: Enhancing the teleportation of quantum Fisher information by weak measurement and environment-assisted measurement. Quantum Inf. Process. 20(2), 55 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  21. Xiao, X., Yao, Y., Zhong, W.-J., Li, Y.-L., Xie, Y.-M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  22. Santos, L.F.: Entanglement in quantum computers described by the XXZ model with defects. Phys. Rev. A 67, 062306 (2003)

    Article  ADS  Google Scholar 

  23. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  24. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Lett. 93, 250404 (2004)

    Article  MathSciNet  Google Scholar 

  25. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  26. Vidal, J., Palacios, G., Mosseri, R.: Entanglement in a second-order quantum phase transition. Phys. Rev. A 69, 022107 (2004)

    Article  ADS  Google Scholar 

  27. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  29. Xie, Y.X., Xu, X.X.: Nonlocal advantage of quantum coherence and quantum discord versus internal energy in the Heisenberg chain. Quantum Inf. Process. 20(7), 251 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  30. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  31. Ciliberti, L., Rossignoli, R., Canosa, N.: Quantum discord in finite XY chains. Phys. Rev. A 82, 042316 (2010)

    Article  ADS  Google Scholar 

  32. Huang, Y.C.: Scaling of quantum discord in spin models. Phys. Rev. B 89, 054410 (2014)

    Article  ADS  Google Scholar 

  33. Fortes, R., Rigoli, G.: Probabilistic quantum teleportation via thermal entanglement. Phys. Rev. A 96(2), 022315 (2017)

    Article  ADS  Google Scholar 

  34. Cheng, W.W., Wang, X.Y., Sheng, Y.B., Gong, L.Y., Zhao, S.M., Liu, J.M.: Finite-temperature scaling of trace distance discord near criticality in spin diamond structure. Sci. Rep. 7, 42360 (2017)

    Article  ADS  Google Scholar 

  35. Khedif, Y., Daoud, M., Sayouty, E.: Thermal quantum correlations in a two-qubit Heisenberg XXZ spin-1/2 chain under an inhomogeneous magnetic field. Phys. Scr. 94, 125106 (2019)

    Article  ADS  Google Scholar 

  36. Cheng, W.W., Shan, C.J., Sheng, Y.B., Gong, L.Y., Zhao, S.M.: Quantum correlation approach to criticality in the XX spin chain with multiple interaction. Physica B 407, 3671 (2012)

    Article  ADS  Google Scholar 

  37. Hammar, P.R., Stone, M.B., Reich Daniel, H.: Characterization of a quasi-one-dimensional spin-1/2 magnet which is gapless and paramagnetic for gμBH ≤J and KBT≤J. Phys. Rev. B 59, 1008 (1999)

    Article  ADS  Google Scholar 

  38. Hoyos, J.A., Rigolin, G.: Quantum channels in random spin chains. Phys. Rev. A 74, 062324 (2006)

    Article  ADS  Google Scholar 

  39. Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  40. Luo, S.L.: Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681–688 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the help and the good suggestions from the Prof. J.M. Liu of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

XML and GJG contributed to the conceptual development of the project and calculations. J-ML contributed to provide modification suggestions and discussions of the results. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to X. M. Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X.M., Gao, G.J. & Liu, JM. Thermal quantum Fisher information and influence of magnetic field distribution in a two-qubit XXZ spin model. Quantum Inf Process 22, 446 (2023). https://doi.org/10.1007/s11128-023-04208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04208-6

Keywords

Navigation