Skip to main content

Advertisement

Log in

Authenticable dynamic quantum multi-secret sharing based on the Chinese remainder theorem

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing is widely applied in the fields, such as communications and data transmission. In this paper, we propose an authenticable dynamic quantum multi-secret sharing scheme based on the Chinese remainder theorem. In our scheme, the dynamic update of the participants set is permissible without changing the shared secret. To share multi-secret, the distributor generates corresponding shares based on the Chinese remainder theorem and monotone span program, and the GHZ state acts as the information carrier traveling among the participants in the authorization set; the participants utilize the Hadamard operator and Pauli operators to embed their shares in the traveling particles. In this way, the participants will reconstruct multiple secrets. Furthermore, the proposed quantum digital signature algorithm based on entanglement swapping is utilized to realize the identity authentication between participants. The security analysis shows that the proposed scheme can resist intercept-resend attack, entanglement-measurement attack, internal dishonest participant attack, add or withdraw participant attack, and denial attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All relevant data are within the paper.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements Knowledge, International Workshop On, pp. 313–313. IEEE Computer Society (1979)

  3. Mignotte, M.: How to share a secret. In: Cryptography: Proceedings of the Workshop on Cryptography Burg Feuerstein, Germany, March 29–April 2, 1982 1, pp. 371–375 (1983). Springer

  4. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29(2), 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Shi, R., Lv, G., Wang, Y., Huang, D., Guo, Y.: On quantum secret sharing via chinese remainder theorem with the non-maximally entanglement state analysis. Int. J. Theor. Phys. 52(2), 539–548 (2013)

    Article  Google Scholar 

  8. Li, F., Yan, J., Zhu, S.: General quantum secret sharing scheme based on two qudit. Quantum Inf. Process. 20(10), 328 (2021)

  9. Qin, H., Zhu, X., Dai, Y.: (t, n) threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14, 2997–3004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cao, H., Ma, W.: Verifiable threshold quantum state sharing scheme. IEEE Access 6, 10453–10457 (2018)

    Article  Google Scholar 

  11. Benaloh, J., Leichter, J.: Generalized Secret Sharing and Monotone Functions, pp. 27–35. Springer, New York (1990)

  12. Bai, C.-M., Li, Z.-H., Si, M.-M., Li, Y.-M.: Quantum secret sharing for a general quantum access structure. Eur. Phys. J. D 71, 1–8 (2017)

    Article  ADS  CAS  Google Scholar 

  13. Wang, M.-M., Chen, X.-B., Yang, Y.-X.: Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Inf. Process. 13, 429–443 (2014)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Mashhadi, S.: Verifiable quantum secret sharing with multi access structures. Optik 270, 169896 (2022)

    Article  ADS  Google Scholar 

  15. Simmons, G.J.: An introduction to shared secret and/or shared control schemes and their application. In: Contemporary Cryptology, pp. 441–497. IEEE Press (1991)

  16. Hsu, J.-L., Chong, S.-K., Hwang, T., Tsai, C.-W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jia, H.-Y., Wen, Q.-Y., Gao, F., Qin, S.-J., Guo, F.-Z.: Dynamic quantum secret sharing. Phys. Lett. A 376(10–11), 1035–1041 (2012)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Wang, T.-Y., Li, Y.-P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12, 1991–1997 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Liao, C.-H., Yang, C.-W., Hwang, T.: Comment on “dynamic quantum secret sharing’’. Quantum Inf. Process. 12, 3143–3147 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liao, C.-H., Yang, C.-W., Hwang, T.: Dynamic quantum secret sharing protocol based on ghz state. Quantum Inf. Process. 13, 1907–1916 (2014)

    Article  ADS  Google Scholar 

  21. Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)

    Article  Google Scholar 

  22. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using d-dimensional ghz state. Quantum Inf. Process. 16, 1–13 (2017)

    Article  MathSciNet  CAS  Google Scholar 

  23. Song, Y., Li, Z., Li, Y.: A dynamic multiparty quantum direct secret sharing based on generalized ghz states. Quantum Inf. Process. 17, 1–21 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Du, Y.-T., Bao, W.-S.: Dynamic quantum secret sharing protocol based on two-particle transform of bell states. Chin. Phys. B 27(8), 080304 (2018)

    Article  ADS  Google Scholar 

  25. Li, F., Chen, T., Zhu, S.: Dynamic (t, n) threshold quantum secret sharing based on d-dimensional bell state. Physica A 606, 128122 (2022)

    Article  MathSciNet  Google Scholar 

  26. Yang, C.-W., Tsai, C.-W.: Participant attack and improving dynamic quantum secret sharing using d-dimensional ghz state. Mod. Phys. Lett. A 35(06), 2050024 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gao, G., Wei, C.-C., Wang, D.: Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of bell states. Quantum Inf. Process. 18, 1–9 (2019)

    Article  Google Scholar 

  28. Yang, C.-W., Tsai, C.-W.: Improved dynamic multiparty quantum direct secret sharing protocol based on generalized ghz states to prevent collusion attack. Mod. Phys. Lett. A 35(08), 2050040 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Yang, C.-W., Tsai, C.-W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19, 1–14 (2020)

    ADS  MathSciNet  Google Scholar 

  30. Hu, W., Zhou, R.-G., Li, X., Fan, P., Tan, C.: A novel dynamic quantum secret sharing in high-dimensional quantum system. Quantum Inf. Process. 20, 1–28 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, X.-W., Tang, S.-Q., Yuan, J.-B., Zhang, D.-Y.: Distilling perfect ghz states from two copies of non-ghz-diagonal mixed states. Opt. Commun. 392, 185–189 (2017)

    Article  ADS  CAS  Google Scholar 

  32. Lin, S., Zhang, X., Guo, G.-D., Wang, L.-L., Liu, X.-F.: Multiparty quantum key agreement. Phys. Rev. A 104(4), 042421 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. Man, Z.-X., Xia, Y.-J., An, N.B.: Quantum secure direct communication by using ghz states and entanglement swapping. J. Phys. B-At. Mol. Opt. Phys. 39(18), 3855 (2006)

    Article  ADS  CAS  Google Scholar 

  34. Nikov, V., Nikova, S., Preneel, B.: On the size of monotone span programs. In: International Conference on Security in Communication Networks, pp. 249–262. Springer (2004)

  35. Hsu, C.-F., Cheng, Q., Tang, X., Zeng, B.: An ideal multi-secret sharing scheme based on msp. Inf. Sci. 181(7), 1403–1409 (2011)

    Article  MathSciNet  Google Scholar 

  36. Blundo, C., De Santis, A., Di Crescenzo, G., Gaggia, A.G., Vaccaro, U.: Multi-secret sharing schemes. In: Annual International Cryptology Conference, pp. 150–163. Springer (1994)

  37. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  38. Foulds, S., Kendon, V., Spiller, T.: The controlled swap test for determining quantum entanglement. Quantum Sci. Technol. 6(3), 035002 (2021)

    Article  ADS  Google Scholar 

  39. Amiri, R., Andersson, E.: Unconditionally secure quantum signatures. Entropy 17(8), 5635–5659 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Li, D., Zhang, J., Guo, F.-Z., Huang, W., Wen, Q.-Y., Chen, H.: Discrete-time interacting quantum walks and quantum hash schemes. Quantum Inf. Process. 12, 1501–1513 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  42. Zhang, S., Ying, M.: Set discrimination of quantum states. Phys. Rev. A 65(6), 062322 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on ghz-like states. Quantum Inf. Process. 14, 739–753 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. Lu, C., Miao, F., Hou, J., Huang, W., Xiong, Y.: A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security. Quantum Inf. Process. 19, 1–20 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to two anonymous reviewers for their constructive comments that have greatly helped to improve the quality of this paper. This study is supported by the National Natural Science Foundation of China under Grant No.11671244.

Funding

This research was funded by National Natural Science Foundation of China(Grant No.11671244).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ZH and LL; writing-original draft preparation, LL; writing-review, ZH and ZL; editing, LL,TF and LZ.

Corresponding author

Correspondence to Zhaowei Han.

Ethics declarations

Conflict of interest

The authors do not have any possible conflicts of interset.

Ethics approval

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of Eq. (5)

Appendix A Proof of Eq. (5)

Proof

\(\left| \Psi (b,u_{1},\dots ,u_{n} )\right\rangle =\frac{1}{\sqrt{2}} \left( \left| 0u_{1}\dots u_{n}\right\rangle +\left( -1 \right) ^{b} \left| 1\overline{u_{1}\dots u_{n}}\right\rangle \right) =\frac{1}{\sqrt{2}}\sum _{j=0}^{1}\) \(\left( -1 \right) ^{jb}\left| j,j+u_{1},\dots ,j+u_{n} \right\rangle \), the four Pauli operators in Eq.(4) can be rewritten to \(U_{\alpha ,\beta }=\sum _{j=0}^{1} \left( -1 \right) ^{j\alpha } \mathinner {|{j}\rangle }\mathinner {\langle {j+\beta }|}\), \( \alpha ,\beta \in \left\{ 0,1 \right\} \), thus,

(A1)

where, \(\alpha _{i},\beta _{i}\in \left\{ 0,1 \right\} , i=0,1,\dots ,n\), and since

(A2)

removing the global phase, Eq.(5) holds,i.e.,

$$\begin{aligned} \begin{aligned}&U_{\alpha _{0},\beta _{0}}\otimes U_{\alpha _{1},\beta _{1}}\otimes U_{\alpha _{2},\beta _{2}}\otimes \dots \otimes U_{\alpha _{n},\beta _{n}} \left| \Psi (b,u_{1},\dots ,u_{n} ) \right\rangle \\=&\left( -1 \right) ^{( u_{1} +\beta _{1} )\alpha _{1}+(u_{2} +\beta _{2} )\alpha _{2}+\cdots +(u_{n} +\beta _{n} )\alpha _{n}}\left| \Psi \left( b+\alpha _{0}+\alpha _{1}+\alpha _{2}+\dots +\alpha _{n},u_{1}\right. \right. \\&\left. \left. +\beta _{0}+\beta _{1},\dots ,u_{n}+\beta _{0}+\beta _{n} \right) \right\rangle . \end{aligned} \end{aligned}$$

\(\square \)

Extension of Eq. (5)

\(n+1\) generalized Pauli operator \(U_{\alpha '_{i},\beta '_{i}} =\sum _{j=0}^{d-1} \omega ^{j\alpha '_{i} } \mathinner {|{j}\rangle }\mathinner {\langle {j+\beta '_{i}}|}\left( i=0,1,\cdots ,n \right) \) is applied to \(n+1\)-qudit GHZ state \(\left| \Phi (b,u_{1},\dots ,u_{n} )\right\rangle =\frac{1}{\sqrt{d}}\sum _{j=0}^{d-1}\omega ^{jb}\left| j,j+u_{1},\right. \) \(\left. \dots ,j+u_{n}\right\rangle \),where, \(\omega =e^{\frac{2\pi \mathfrak {i}}{d}}\), we can obtain the equation as follows:

$$\begin{aligned} \begin{aligned}&U_{\alpha '_{0},\beta ' _{0}}\otimes U_{\alpha '_{1},\beta ' _{1}}\otimes U_{\alpha '_{2},\beta ' _{2}}\otimes \dots \otimes U_{\alpha '_{n},\beta ' _{n}} \left| \Phi (b,u_{1},\dots ,u_{n} ) \right\rangle \\ =&\omega ^{( u_{1} +\beta '_{1} )\alpha ' _{1}+(u_{2} +\beta '_{2} )\alpha '_{2}+\cdots +(u_{n} +\beta '_{n} )\alpha '_{n}}\left| \Phi \left( b+\alpha '_{0}+\alpha ' _{1}+\alpha ' _{2}+\dots +\alpha ' _{n},u_{1}+\beta ' _{0}\right. \right. \\&\left. \left. +\bar{\beta '_{1}},\dots ,u_{n}+\beta ' _{0}+\bar{\beta '_{n}} \right) \right\rangle , \end{aligned}\nonumber \\ \end{aligned}$$
(A3)

Proof

(A4)

since,

(A5)

where, \(\alpha '_{i},\beta '_{i}\in \left\{ 0,1,\cdots ,d-1\right\} \), removing the global phase, from the Eq.(A4) and Eq.(A5), we know that the Eq.(A3) holds. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Han, Z., Li, Z. et al. Authenticable dynamic quantum multi-secret sharing based on the Chinese remainder theorem. Quantum Inf Process 23, 46 (2024). https://doi.org/10.1007/s11128-023-04236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04236-2

Keywords